• Tool Steel H13/1.2344 Round Steel Bar Alloy Steel Bar System 1
  • Tool Steel H13/1.2344 Round Steel Bar Alloy Steel Bar System 2
  • Tool Steel H13/1.2344 Round Steel Bar Alloy Steel Bar System 3
Tool Steel H13/1.2344 Round Steel Bar Alloy Steel Bar

Tool Steel H13/1.2344 Round Steel Bar Alloy Steel Bar

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Alloy Steel
Shape:
Steel Round Bar

Tool Steel H13/1.2344 Round Steel Bar Alloy Steel Bar

 

Product information:

H13/1.2344 round bar
1.Diameter:10mm~600mm,
2.Delivery Conditon:annealed, black/turned surface
3.Short Delivery Time

4.Payment:By 30% ,T/T in advanced payment or L/C at sight

5.Min qty:25MT

6.Dlivery terms:CFR or CIF

7.Delivery time:according to your qty

 Tool Steel H13/1.2344 Round Steel Bar Alloy Steel Bar

Product show

Tool Steel H13/1.2344 Round Steel Bar Alloy Steel Bar

 

Workshop show

Tool Steel H13/1.2344 Round Steel Bar Alloy Steel Bar

 

Our service: 

-High manufacturing accuracy
-High strength
-Small inertia resistance
-Strong heat dissipation ability
-Good visual effect
-Reasonable price

Chose happens because of quality, then price, We can give you both.Additionally, we can also offer professional products inquiry, products knowledge train(for agents), smooth goods delivery, exellent customer solution proposals.Our service formula: good quality+good price+good service=customer's trust
SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem.

If you need the sample, please feel free to let me know. Any question, we will contact you ASAP!

 

Q:What are the different methods of surface etching for special steel?
Special steel can be surface etched using various methods. These methods include the following: 1. Chemical etching: This technique involves selectively removing material from the steel surface using different acids or chemical solutions. It allows for precise control and can create intricate patterns or designs. 2. Electrochemical etching: By using an electrical current, the steel surface is etched. This method is effective for creating uniform and deep etches, often used for labeling or marking purposes. 3. Laser etching: A high-powered laser is utilized to remove material from the steel surface. This method is known for its precision and ability to create detailed designs or markings, commonly used for branding or decorative purposes. 4. Mechanical etching: Physical abrasion is employed to remove material from the steel surface. This can be done manually with tools like sandpaper or brushes, or with the help of machinery like a sandblaster. Mechanical etching is often used to create a textured or roughened surface. 5. Plasma etching: High-energy plasma is used to remove material from the steel surface. This method is useful for creating fine and shallow etches, commonly employed in microfabrication or semiconductor manufacturing. Each method has its own advantages and limitations. The choice of which method to use depends on factors such as the desired outcome, the specific type of special steel being etched, and the available equipment and resources.
Q:What are the properties of ultra-high-strength steel?
Ultra-high-strength steel possesses exceptional mechanical properties, including high tensile strength, excellent toughness, and superior fatigue resistance. It exhibits high stiffness, enabling it to withstand heavy loads and maintain its shape even under extreme conditions. With its low weight and high strength-to-weight ratio, this steel offers enhanced fuel efficiency and increased payload capacity. Additionally, it exhibits good weldability, corrosion resistance, and is often used in applications where both strength and durability are paramount, such as in automotive, aerospace, and construction industries.
Q:What are the different methods of surface powder coating for special steel?
There are several methods of surface powder coating that are commonly used for special steel. These methods include: 1. Electrostatic powder coating: This method involves applying an electric charge to the powder particles and then spraying them onto the steel surface. The charged particles are attracted to the grounded steel, resulting in a uniform and durable coating. 2. Fluidized bed powder coating: In this method, the steel is preheated and then dipped into a fluidized bed of powder particles. The heat causes the powder to melt and form a smooth coating on the steel surface. Excess powder is then removed by shaking or blowing air. 3. Flame spray powder coating: This method involves heating the powder particles using a flame and then spraying them onto the steel surface. The heat melts the powder, which then solidifies to form a coating. Flame spray powder coating is often used for larger steel structures or for repairing damaged coatings. 4. Thermal spray powder coating: This method uses a thermal spray gun to heat and propel the powder particles onto the steel surface. The high velocity of the particles ensures good adhesion and a dense coating. Thermal spray powder coating is often used for high-wear applications or in corrosive environments. 5. UV-cured powder coating: This method involves applying a UV-sensitive powder onto the steel surface and then exposing it to UV light. The UV light initiates a chemical reaction that causes the powder to cure and form a hard coating. UV-cured powder coating is known for its fast curing time and excellent resistance to chemicals and UV radiation. Each of these methods has its own advantages and considerations, and the choice of method will depend on factors such as the specific requirements of the steel surface, the desired coating thickness, and the production volume.
Q:How does special steel contribute to reducing product weight while maintaining strength?
Special steel, such as high-strength low-alloy (HSLA) steel, contributes to reducing product weight while maintaining strength through its unique properties. Special steel is engineered to have a higher strength-to-weight ratio compared to traditional steel, allowing manufacturers to use less material without compromising strength. The use of special steel enables the production of lighter and more efficient products, which can have significant benefits in various industries such as automotive, aerospace, and construction.
Q:How does special steel contribute to the aerospace turbine industry?
Special steel plays a crucial role in the aerospace turbine industry as it offers exceptional strength, corrosion resistance, and high-temperature stability required for the demanding operating conditions of turbine components. It enables the production of turbine blades, discs, and other critical parts that can withstand extreme temperatures and stresses, ensuring optimal performance and safety in aircraft engines. Additionally, special steel's excellent fatigue resistance and ability to retain mechanical properties at elevated temperatures contribute to enhanced fuel efficiency and durability, ultimately advancing the overall efficiency and reliability of aerospace turbines.
Q:What are the different methods of surface hardening for special steel?
Special steel can be surface hardened using various methods. These methods comprise: 1. Carburizing: By subjecting the steel to a carbon-rich environment, such as gas or liquid, carbon atoms can infiltrate the steel surface. This results in enhanced surface hardness and wear resistance. 2. Nitriding: Steel is heated in an environment rich in nitrogen, causing nitrogen atoms to permeate the surface. This creates a durable, wear-resistant outer layer. 3. Induction hardening: By passing an alternating current through a coil, a magnetic field is generated, inducing electrical currents in the steel. The resistance to these currents generates heat, leading to high surface temperatures and rapid quenching, ultimately increasing hardness. 4. Flame hardening: The steel surface is heated using a flame or oxy-fuel torch, followed by quenching in water or oil. The swift cooling from elevated temperatures facilitates surface hardening. 5. Laser hardening: Laser beams are employed to rapidly heat a specific area of the steel surface, which is then promptly cooled with a coolant. This localized heating and cooling process enhances the hardness of the treated region. 6. Plasma nitriding: Steel is placed in a low-pressure plasma chamber, where nitrogen ions bombard the surface, facilitating nitrogen diffusion and the formation of a hardened layer. Each method offers distinct advantages and is suitable for diverse applications and types of special steel. The selection of a surface hardening method depends on factors such as desired hardness, dimensional limitations, and specific application requirements.
Q:How does special steel perform in automotive applications?
Special steel performs exceptionally well in automotive applications due to its unique properties and characteristics. It offers superior strength, durability, and resistance to wear and corrosion, making it highly suitable for critical components such as engine parts, chassis, and suspension systems. Special steel also enables the production of lightweight designs, enhancing fuel efficiency and reducing emissions. Additionally, its high heat resistance and thermal conductivity contribute to improved performance and safety in extreme conditions. Overall, the use of special steel in automotive applications ensures enhanced reliability, performance, and longevity of vehicles.
Q:How does special steel perform in high-velocity impact conditions?
Special steel is specifically designed to perform well in high-velocity impact conditions. It possesses exceptional strength and toughness, allowing it to withstand the intense forces exerted during such impacts. The unique composition and heat treatment of special steel enable it to absorb and distribute the energy generated by the impact, minimizing deformation and potential damage. Overall, special steel demonstrates excellent performance and reliability in high-velocity impact conditions.
Q:How does special steel perform in high-temperature oxidation?
Special steel performs well in high-temperature oxidation due to its enhanced resistance to heat and corrosion. It exhibits superior strength and stability, retaining its mechanical properties even at elevated temperatures. Additionally, the presence of alloying elements like chromium, nickel, and molybdenum in special steel forms a protective oxide layer that prevents further oxidation. This makes special steel an ideal choice for applications requiring resistance to high-temperature oxidation, such as in aerospace, power generation, and chemical industries.
Q:What are the different surface defects in special steel?
Some common surface defects in special steel include scale, pits, scratches, cracks, and inclusions. Scale refers to the formation of oxide layers on the surface, while pits are small depressions caused by corrosion or mechanical damage. Scratches can occur during handling or processing, while cracks are often due to excessive stress or improper heat treatment. Inclusions are foreign particles or impurities embedded in the steel, which can impact its overall quality and performance.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords