• Steel Ribbed Rebar HRB400 System 1
Steel Ribbed Rebar HRB400

Steel Ribbed Rebar HRB400

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥400

≥570

≥14

Theoretical weight and section area of each diameter as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m bar(kg)

6

28.27

0.222

2.664

8

50.27

0.395

4.74

10

78.54

0.617

7.404

12

113.1

0.888

10.656

14

153.9

1.21

14.52

16

201.1

1.58

18.96

18

254.5

2.00

24

20

314.2

2.47

29.64

22

380.1

2.98

35.76

25

490.9

3.85

46.2

28

615.8

4.83

57.96

32

804.2

6.31

75.72

36

1018

7.99

98.88

40

1257

9.87

118.44

50

1964

15.42

185.04

Usage and Applications of HRB400 Deformed Steel Bar:

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

Packaging & Delivery of HRB400 Deformed Steel Bar:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Q:How are steel rebars used in road and pavement construction?
Steel rebars are used in road and pavement construction to provide reinforcement and enhance the structural integrity of the concrete. They are placed within the concrete mixture to withstand the tensile forces and prevent cracks or failures in the road or pavement, ensuring durability and longevity of the infrastructure.
Q:Are steel rebars magnetic?
Yes, steel rebars are magnetic because they are primarily made of carbon steel, which is a ferromagnetic material.
Q:Are steel rebars prone to expansion and contraction?
Yes, steel rebars are prone to expansion and contraction due to changes in temperature.
Q:What is the process of anchoring steel rebars in concrete?
The process of anchoring steel rebars in concrete involves several steps to ensure a strong and secure bond between the rebar and the concrete. First, the concrete surface where the rebar will be anchored needs to be prepared. This typically involves cleaning the surface to remove any dirt, dust, or debris that could interfere with the bonding process. It is also important to ensure that the concrete is fully cured and has reached the required strength before proceeding. Next, the rebar is cut to the desired length and shape according to the construction plans. It is important to follow the specified dimensions and placement requirements to ensure proper reinforcement and structural integrity. After the rebar is prepared, it is usually placed in the desired position within the concrete formwork. The rebar should be positioned at the correct depth and spacing as specified by the design. This is typically accomplished by using plastic or metal chairs, spacers, or tie wire to hold the rebar in place. Once the rebar is properly positioned, the next step is to secure it to the concrete. One common method of anchoring the rebar is by using mechanical anchors or rebar couplers. These devices are designed to create a strong connection between the rebar and the concrete by utilizing various mechanisms such as threading, crimping, or expansion. Alternatively, another method of anchoring the rebar is by using adhesive or cementitious grouts. These materials are applied to the rebar and then inserted into pre-drilled holes in the concrete. The adhesive or grout helps to bond the rebar to the concrete and provides additional reinforcement. Finally, after the rebar is anchored, the concrete is poured or placed around it. The concrete should be properly consolidated to ensure that it fully surrounds and encases the rebar. This can be achieved through techniques such as vibrating the concrete or using specialized equipment. Overall, the process of anchoring steel rebars in concrete involves careful planning, preparation, and execution to ensure a reliable and durable bond between the rebar and the concrete. Following industry standards and design specifications is crucial to achieve the desired structural strength and integrity.
Q:Can steel rebars be used in the construction of government buildings?
Yes, steel rebars can be used in the construction of government buildings. Steel rebars are commonly used in construction due to their high strength and durability, making them suitable for various building types, including government buildings. They provide reinforcement to concrete structures, increasing their load-bearing capacity and structural integrity, which is essential for the safety and longevity of government buildings. Additionally, steel rebars comply with industry standards and building codes, ensuring that the construction meets the necessary regulations and requirements.
Q:How do steel rebars affect the overall weight of a construction project?
Steel rebars can have a significant impact on the overall weight of a construction project. Rebars are typically used to reinforce concrete structures, such as beams, columns, and foundations, to enhance their strength and durability. As steel rebars are made of high-strength steel, they add substantial weight to the project. The weight of steel rebars can affect various aspects of the construction project. Firstly, the total weight of the rebars needs to be considered during the design phase to ensure that the structure can support the additional load. This is particularly important when constructing high-rise buildings or structures that require heavy reinforcement. Additionally, the weight of steel rebars can impact transportation and logistics. As rebars are generally delivered to the construction site in large quantities, their weight can affect the choice of transportation methods, such as trucks or cranes, and may require special permits or equipment. The weight of rebars also adds to the cost of transportation. Moreover, the overall weight of the construction project affects the foundation requirements. The higher the weight of a structure, the stronger the foundation needs to be to support and distribute the load adequately. This may result in the need for deeper or wider foundations, which can increase costs and construction time. Lastly, the weight of steel rebars can impact the overall sustainability of a construction project. Since the production of steel involves significant energy consumption and emissions, the increased weight of rebars can contribute to a higher carbon footprint. Therefore, it is essential for construction projects to find a balance between reinforcement needs and environmental considerations. In conclusion, steel rebars have a tangible impact on the overall weight of a construction project. Their weight affects the design, transportation, foundation requirements, and sustainability of the project. It is crucial for architects, engineers, and project managers to carefully consider the weight of steel rebars to ensure the structural integrity and efficiency of the construction project.
Q:What are the different types of steel rebars available for different applications?
There are several different types of steel rebars available for various applications. Some of the most commonly used types include: 1. Mild Steel Rebars: These are the most common type of rebars used in construction projects. They have a low carbon content and are relatively inexpensive. Mild steel rebars are suitable for general construction purposes and are used in residential buildings, bridges, and small to medium-sized structures. 2. High-strength Reinforcement Bars (HSRB): These rebars have a higher tensile strength compared to mild steel rebars. They are commonly used in high-rise buildings, large infrastructure projects, and heavy-duty structures where greater strength is required. HSRB rebars are often made from alloys such as carbon, manganese, or silicon to enhance their strength. 3. Epoxy-Coated Rebars: These rebars are coated with epoxy resin to protect them from corrosion. Epoxy-coated rebars are commonly used in marine structures, parking garages, and areas with high humidity or exposure to moisture. The epoxy coating acts as a barrier, preventing the steel from coming into contact with corrosive elements, thus extending the lifespan of the rebar. 4. Stainless Steel Rebars: Unlike mild steel rebars, stainless steel rebars contain a significant amount of chromium, which provides excellent resistance to corrosion. These rebars are often utilized in highly corrosive environments such as coastal areas, chemical plants, and wastewater treatment facilities. Stainless steel rebars are also used in structures that require a high aesthetic appeal, such as architectural buildings and monuments. 5. Galvanized Rebars: Galvanized rebars are coated with zinc to protect them from corrosion. The zinc coating acts as a sacrificial layer, corroding itself before the underlying steel is affected. These rebars are commonly used in areas with moderate corrosion risks, such as concrete structures exposed to deicing salts or in coastal regions. 6. Carbon Fiber Reinforced Polymer (CFRP) Rebars: CFRP rebars are made of carbon fibers embedded in a polymer matrix. They are lightweight, corrosion-resistant, and have high tensile strength. CFRP rebars are commonly used in retrofitting existing structures, as they provide excellent strength and durability without adding significant weight. The choice of steel rebar depends on the specific application, environmental conditions, and structural requirements. It is essential to consult with structural engineers and adhere to local building codes and standards to ensure the appropriate type of rebar is selected for each project.
Q:How do steel rebars impact the constructability and formwork requirements of concrete elements?
The constructability and formwork requirements of concrete elements are greatly affected by steel rebars. These reinforcement bars, also called rebars, are extensively used in concrete construction to strengthen and increase the durability of structural elements. To begin with, the presence of rebars impacts the constructability of concrete elements by providing structural integrity and load-bearing capacity. By strategically placing rebars in areas like beams, columns, and slabs, the overall strength and stability of the structure are significantly improved. This enables the construction of larger and more intricate concrete elements, as rebars help distribute loads more efficiently. Additionally, rebars also have an impact on the formwork requirements of concrete elements. Formwork refers to the temporary structure used to support the concrete until it sets and gains enough strength to support itself. The inclusion of rebars requires careful consideration when designing the formwork, as the presence of reinforcement bars can increase the weight and volume of the concrete. The size, spacing, and positioning of rebars influence the design and construction process of the formwork. The formwork must be designed to accommodate the rebars and ensure proper placement and consolidation of the concrete around them. This may entail additional reinforcement in the formwork, such as tie wires or supports, to prevent displacement or movement of the rebars during concrete pouring. Furthermore, rebars also impact the overall timeline and cost of the construction project. The need for additional formwork materials and reinforcement can raise both material and labor costs. Additionally, the presence of rebars may require more time for formwork installation, concrete pouring, and curing, as the rebars need to be correctly positioned and secured within the concrete elements. In conclusion, steel rebars have a significant impact on the constructability and formwork requirements of concrete elements. They enhance the structural integrity of the concrete, allowing for the construction of larger and more intricate elements. However, their inclusion also necessitates careful planning and design of the formwork, considering the size, spacing, and positioning of the rebars. Overall, rebars play a crucial role in ensuring the strength, stability, and longevity of concrete structures.
Q:How do steel rebars contribute to the load-bearing capacity of concrete slabs?
The load-bearing capacity of concrete slabs is improved through various mechanisms by steel rebars. Firstly, they increase the tensile strength of the concrete. While concrete is renowned for its compressive strength, it lacks the ability to resist tensile forces. By incorporating steel rebars into the concrete, a reinforced structure is formed, capable of withstanding both compressive and tensile stresses. This effectively prevents the concrete from cracking or failing when subjected to heavy loads. Secondly, steel rebars aid in the even distribution of loads across the concrete slab. When a load is applied to the slab, it tends to concentrate at specific points, leading to stress concentrations. However, the presence of rebars facilitates the spreading of the load over a larger area, reducing stress on individual points and enhancing the overall load-bearing capacity of the slab. Additionally, steel rebars serve as a barrier against crack propagation in concrete slabs. If a crack occurs, the rebars act as reinforcement, holding the cracked sections together and preventing the crack from expanding further. This ensures the structural integrity of the slab is maintained, safeguarding its load-bearing capacity. In conclusion, steel rebars are indispensable in bolstering the load-bearing capacity of concrete slabs. They provide tensile strength, ensure even load distribution, and inhibit crack propagation. By incorporating rebars, the durability and ability of concrete structures to withstand heavy loads are significantly improved, making them indispensable components in construction projects.
Q:How do steel rebars affect the crack resistance of concrete structures?
Steel rebars significantly increase the crack resistance of concrete structures. By reinforcing the concrete, rebars help distribute the tensile forces that cause cracking, improving the overall strength and durability of the structure. The rebars act as a reinforcement to hold the concrete together and prevent cracks from forming or spreading, ensuring the longevity and structural integrity of the construction.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords