• B500A  deformed steel bar deformed steel bar System 1
  • B500A  deformed steel bar deformed steel bar System 2
  • B500A  deformed steel bar deformed steel bar System 3
B500A  deformed steel bar deformed steel bar

B500A deformed steel bar deformed steel bar

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering B500A  deformed steel bar at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

B500A  deformed steel bar are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's  deformed steel bar are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Specifications of HRB400 Deformed Steel Bar:

Standard

GB

HRB400

Diameter

6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,

22mm,25mm,28mm,32mm,36mm,40mm,50mm

Length

6M, 9M,12M or as required

Place of origin

Hebei, China mainland

Advantages

exact size, regular package, chemical and   mechanical properties are stable.

Type

Hot rolled deformed steel bar

Brand name

DRAGON

Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥400

≥570

≥14

Theoretical weight and section area of each diameter as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m bar(kg)

6

28.27

0.222

2.664

8

50.27

0.395

4.74

10

78.54

0.617

7.404

12

113.1

0.888

10.656

14

153.9

1.21

14.52

16

201.1

1.58

18.96

18

254.5

2.00

24

20

314.2

2.47

29.64

22

380.1

2.98

35.76

25

490.9

3.85

46.2

28

615.8

4.83

57.96

32

804.2

6.31

75.72

36

1018

7.99

98.88

40

1257

9.87

118.44

50

1964

15.42

185.04

Usage and Applications of HRB400 Deformed Steel Bar:

 

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

Packaging & Delivery of HRB400 Deformed Steel Bar:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment term: TT or L/C

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF

Deformed Steel Bar in container

Deformed Steel Bar in container

Deformed Steel Bar in factory

Deformed Steel Bar in factory

Note:

1. Our products are produced according to national standard (GB), if not, supply according to national standards (GB) or agreement as customer required.

2. Other Grade and Standard Deformed Steel Bar we can supply:

   Grade: GR40/GR60, G460B/B500A/B500B/B500C,BST500S

   Standard: ASTM, BS, DIN

   The Minimum Order Quantity of these products is high, and need to be confirmed.

3. We can not only supply Deformed Steel Bar; if you need anything about building materials, please contact us for further information.

4. Please send us your detail specifications when inquire. We will reply to you as soon as possible. We sincerely hope we can establish a long stable business relationship.

FAQ:

Q1: How do we guarantee the quality of our products?

A1: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q2: What makes stainless steel stainless?

A2: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q:How are steel rebars protected during the concrete pouring process?
To ensure the longevity and structural integrity of steel rebars during the concrete pouring process, several protective measures are implemented. Initially, prior to pouring the concrete, the rebars undergo meticulous cleaning to eliminate any rust, dirt, or contaminants that may compromise the bond between the rebar and the concrete. This is typically achieved by utilizing a wire brush or other mechanical methods. Once the rebars have been thoroughly cleaned, a common practice is to apply a protective layer or coating to them. An epoxy coating is frequently employed for this purpose. The coating acts as a barrier, preventing moisture and chemicals from reaching the steel and causing corrosion. Epoxy coatings are especially valuable in high-risk environments like marine structures or areas with a high chloride content. Another protective method involves the use of corrosion inhibitors. These inhibitors are added to the concrete mixture, which subsequently forms a protective layer around the rebars. By reducing the corrosive effects of chloride ions, oxygen, and other chemicals, the inhibitors work to prevent corrosion. Additionally, it is crucial to ensure adequate concrete cover over the rebars during the pouring process. Concrete cover refers to the thickness of the concrete layer between the surface and the rebar. Sufficient concrete cover safeguards the rebars against exposure to moisture, chemicals, and other environmental factors. To achieve the desired concrete cover, steel stirrups or spacers are positioned around the rebars to maintain a specific distance between the rebar and the formwork. This guarantees even distribution of the concrete around the rebars, providing them with the necessary protection. In conclusion, steel rebars are shielded during the concrete pouring process through various methods, including thorough cleaning, the application of protective coatings, the use of corrosion inhibitors, and the maintenance of proper concrete cover. These measures effectively prevent corrosion and ensure the durability and strength of the reinforced concrete structure.
Q:How long do steel rebars typically last?
Steel rebars typically have a long lifespan and can last for several decades. The exact duration of their lifespan depends on various factors, such as the quality of the rebar, the environmental conditions it is exposed to, and the maintenance practices implemented. Generally, steel rebars are designed to be resistant to corrosion, which is one of the main factors that can affect their longevity. However, over time, rebars may experience some corrosion due to exposure to moisture, chemicals, or other corrosive agents. This can potentially reduce their lifespan. Regular inspections, maintenance, and the application of protective coatings can help extend the lifespan of steel rebars. With proper care, steel rebars can typically last 30 to 50 years or even longer.
Q:What are the guidelines for the proper lap splicing of steel rebars?
Here are different grammar and expressions for the given guidelines: 1. Lap Length: To achieve the proper overlapping of rebars, a minimum distance, known as the lap length, must be maintained. This distance is determined based on factors such as bar diameter, strength, and the type of structure. Engineering codes and standards generally specify the required lap lengths. 2. Cleanliness: Before commencing lap splicing, it is crucial to ensure that the rebars are free from any dirt, rust, oil, or other contaminants. The presence of foreign materials on the rebar surface can impede the bond between the overlapping bars. 3. Alignment: The rebars intended for splicing must be accurately aligned and parallel to each other. Any misalignment can result in a weak splice, compromising the structural integrity of the construction. 4. Overlapping: The length of overlap between the rebars should be sufficient to transfer loads effectively and maintain reinforcement continuity. It is imperative to adhere to the specified lap length to achieve the required strength and performance of the reinforced concrete structure. 5. Splice Configuration: The choice of lap splice configuration depends on the structural requirements and the specific design of the project. Commonly used configurations include end-to-end splicing, staggered splicing, and mechanical splices. The selection of the appropriate configuration should comply with relevant codes and standards. 6. Splice Preparation: Thorough cleaning and preparation of the rebars at the lap splice area are necessary. This involves removing any loose rust or scale from the bar surface and ensuring adequate bond length between the bars. 7. Lap Splice Placement: The lap splice should be positioned at the designated location within the concrete member. It is crucial to avoid placing the splice too close to the edge of the concrete element, as this may reduce the cover depth and impact the structure's durability. 8. Splice Length Variations: In situations where achieving the required lap length is not feasible due to space limitations or other restrictions, alternative methods such as mechanical splices or welded splices can be considered. However, it is essential to consult the project engineer or designer to ensure compliance with the appropriate guidelines. 9. Quality Control: The lap splicing process should be subject to proper quality control measures. This includes monitoring the lap splice length, ensuring accurate alignment, and conducting periodic inspections to identify any defects or deficiencies. It is important to note that the above guidelines serve as general recommendations, and the specific requirements for lap splicing may vary depending on the design specifications, construction codes, and local regulations. Therefore, it is always advisable to consult the project engineer or designer for precise guidelines applicable to a particular project.
Q:How are steel rebars marked for identification on construction sites?
Steel rebars are typically marked with a series of symbols, numbers, and colors to identify their size, grade, and other specifications. These markings are usually either painted or embossed on the surface of the rebars, making it easier for construction workers to identify and use them correctly during the construction process.
Q:How do steel rebars affect the overall noise insulation of a structure?
The overall noise insulation of a structure is minimally affected by steel rebars. This is because noise insulation primarily relies on the density and thickness of the construction materials used for walls, floors, and ceilings. Steel rebars, which are used to reinforce concrete structures, do not make a significant contribution to a building's sound insulation properties. The main purpose of steel rebars is to provide strength and stability to the concrete, ensuring its structural integrity. They are typically embedded within the concrete, thus present throughout the building's framework. However, steel rebars themselves do not possess any sound-absorbing or sound-blocking characteristics. To enhance the noise insulation of a structure, other materials specifically designed for sound insulation, such as insulation boards, acoustic panels, or soundproofing materials, need to be incorporated into the building design. These materials are intended to absorb or block sound waves, reducing the transmission of noise from one area to another. Although steel rebars do not directly contribute to noise insulation, they indirectly play a role in maintaining the overall structural integrity of a building. A well-constructed and sturdy structure can help minimize vibrations and sound transmission caused by external noise sources. Therefore, while steel rebars themselves do not significantly affect noise insulation, their presence indirectly contributes to a more solid and stable building, which can help reduce structural vibrations and unwanted noise.
Q:Can steel rebars be used in water treatment plant construction?
Yes, steel rebars can be used in water treatment plant construction. Steel rebars are commonly used in the construction of various structures, including water treatment plants, due to their high strength and durability. They provide reinforcement to concrete structures and ensure their integrity and longevity, making them suitable for use in water treatment plant construction.
Q:How do steel rebars help in preventing cracks in concrete?
Steel rebars help in preventing cracks in concrete by providing reinforcement and added strength to the structure. When concrete is poured, it is strong in compression but weak in tension. This means that it can withstand forces that push or compress it, but it is more susceptible to cracking under pulling or bending forces. Steel rebars are embedded within the concrete to counteract this weakness. The rebars act as a framework, distributing the tensile forces throughout the concrete, preventing cracks from forming and spreading. They reinforce the structure, making it more resistant to bending, shearing, and other external forces. Moreover, steel rebars help in preventing cracks by enhancing the overall structural integrity of the concrete. When concrete undergoes shrinkage during the drying and curing process, it tends to crack. However, with the presence of rebars, the tensile forces caused by shrinkage are absorbed by the steel, reducing or eliminating the formation of cracks. In addition, steel rebars can also prevent cracks in concrete by providing resistance against temperature changes and external loads. They help to control the expansion and contraction of the concrete due to temperature fluctuations, minimizing the risk of cracking. Furthermore, rebars reinforce the concrete against heavy loads, such as those caused by traffic or seismic activity, ensuring that the structure remains intact and crack-free. Overall, steel rebars play a crucial role in preventing cracks in concrete by reinforcing the material, distributing forces, absorbing tensile stresses, and enhancing structural integrity. Their presence significantly improves the durability and longevity of concrete structures, making them more resistant to cracking and ensuring their stability over time.
Q:How do steel rebars help in reducing construction time?
Steel rebars help in reducing construction time in several ways: 1. Strength and durability: Steel rebars provide additional strength and durability to concrete structures, allowing for faster construction techniques. This means that builders can rely on the strength of rebars to support the weight of the structure, reducing the need for slower and more time-consuming construction methods. 2. Reinforcement: By reinforcing concrete with steel rebars, the overall structural integrity of the building is enhanced. This enables builders to use thinner concrete sections without compromising the strength of the structure. Thinner sections require less material and are quicker and easier to pour and cure, saving construction time. 3. Speed of installation: Steel rebars are easy to handle and install, which speeds up the construction process. They can be easily cut and bent to fit the desired shape and size, allowing for efficient installation. This eliminates the need for complex and time-consuming formwork, reducing construction time. 4. Flexibility: Steel rebars offer flexibility in design and construction, allowing for innovative and efficient building techniques. They can be used in various applications, such as beams, columns, and slabs, giving architects and engineers the freedom to design structures that can be constructed quickly and efficiently. 5. Resistance to natural disasters: Steel rebars provide added resistance to seismic activity and other natural disasters. By reinforcing concrete with rebars, structures become more resilient, reducing the risk of damage and accelerating the construction process. This is particularly important in areas prone to earthquakes or extreme weather conditions. Overall, steel rebars play a crucial role in reducing construction time by providing strength, durability, and flexibility. Their ease of installation, coupled with their ability to reinforce concrete structures, allows for faster construction methods and efficient use of materials.
Q:What is the standard size of steel rebars?
The standard size of steel rebars varies depending on the application, but common sizes range from 6mm to 40mm in diameter.
Q:What is the process of reinforcing concrete walls with steel rebars?
The process of reinforcing concrete walls with steel rebars involves several steps. First, the design and placement of rebars are determined based on the structural requirements. Then, the concrete wall is prepared by cleaning and ensuring a strong bond with the rebars. Next, the rebars are cut and bent according to the specified dimensions and patterns. These rebars are then placed in the desired positions within the formwork, ensuring proper spacing and alignment. Once the rebars are in place, the concrete is poured, encapsulating the rebars and forming a solid structure. The concrete is allowed to cure and harden, creating a reinforced concrete wall that is stronger and more resistant to cracking or structural failure.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords