• Seamless steeI tubes for structures System 1
Seamless steeI tubes for structures

Seamless steeI tubes for structures

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Standards:
GB,_r81 62 Chinese national standard
ASTM A53 Standard of American Society of Testing Materials
ASME SA53 Boiler and pressure vessel--c-Ojrde of ASME
Application:
Seamless steel tubes for manufacturing pipelines。vessels,equipment and mechanical structures
Models of major steeI tubes:
1 O,20,35、45,Q345,1 5CrMo,1 2Crl MoV,A53A,A53B,SA53A,SA53B, etc.

Diamensional tolerances:

Types of steel tubes

Outer diameter

Wall thickness

Cold-rolled tubes
Tube sizes(mm)

Tolerances(mm)

Tube sizes (mm)

Tolerances(mm)

>30~50

±0.3

≤30

±10%

>50~219

±0.8%

Hot-rolled tubes

>219

±1.0%

>20

±10%

Mechanical properties:

Standard codes
Models of steel tubes

Tensite strength(MPa)

Yield strength(MPa)

Elongation(%)

GB/T8162

10

≥335

≥205

≥24

20

≥390

≥245

≥20

35

≥510

≥305

≥17

45

≥590

≥335

≥14

Q345

≥490

≥325

≥21

15CrMo

≥440

≥295

≥22

12Cr1MoV

≥490

≥245

≥22

ASTM A53

ASME SA53

A

≥330

≥205

Check the table in ASTM A 53
Check the table in ASME SA53

B

≥415

≥240

Chemical composition:

Standard codes
Models of steel tubes

Chemical compositions(%)

C

Si

Mn

P

S

Cu

Ni

Mo

Cr

V

GB/T8162

10

0.07~0.14

0.17~0.37

0.35~0.65

≤0.035

≤0.035

≤0.25

≤0.25

/

≤0.15

/

20

0.17~0.24

0.17~0.37

0.35~0.65

≤0.035

≤0.035

≤0.25

≤0.25

/

≤0.25

/

35

0.32~0.40

0.17~0.37

0.50~0.80

≤0.035

≤0.035

≤0.25

≤0.25

/

≤0.25

/

45

0.42~0.50

0.17~0.37

0.50~0.80

≤0.035

≤0.035

≤0.25

≤0.25

/

≤0.25

/

Q345

0.12~0.20

0.20~0.55

1.20~1.60

≤0.035

≤0.035

≤0.25

≤0.25

/

≤0.25

/

15CrMo

0.12~0.18

0.17~0.37

0.40~0.70

≤0.035

≤0.035

≤0.25

≤0.30

0.40~0.55

0.80~1.10

/

12Cr1MoV

0.08~0.15

0.17~0.37

0.40~0.70

≤0.035

≤0.035

≤0.25

≤0.30

0.25~0.35

0.90~1.20

0.15~0.30

ASTMA53

ASMESA53

A

≤0.25

/

≤0.95

≤0.05

≤0.06

≤0.40

≤0.40

≤0.15

≤0.40

≤0.08

B

≤0.30

/

≤1.20

≤0.05

≤0.06

≤0.40

≤0.40

≤0.15

≤0.40

≤0.08


Q: How do you determine the maximum allowable stress for a steel pipe?
Several factors need to be taken into account in order to determine the maximum stress that a steel pipe can withstand. The type of steel used in the pipe is of utmost importance, as different types have varying mechanical properties and strengths. Additionally, the dimensions and thickness of the pipe are significant factors in determining its maximum stress capacity. Generally, thicker pipes have higher stress limits compared to thinner ones. Furthermore, it is crucial to consider the operating conditions that the pipe will be exposed to. This includes the temperature, pressure, and the nature of the fluid flowing through the pipe. These conditions can greatly impact the maximum stress that the pipe can tolerate. For instance, high temperatures or corrosive fluids can weaken the steel and reduce its strength. Engineers typically rely on industry standards and codes, such as the ASME Boiler and Pressure Vessel Code and the API standards, to determine the maximum stress limit. These standards provide guidelines and formulas for calculating the maximum stress based on the material properties, dimensions, and operating conditions of the pipe. It is important to emphasize that determining the maximum stress limit is a critical step in ensuring the structural integrity and safety of the steel pipe. It requires a comprehensive understanding of the materials, design considerations, and industry standards. Therefore, it is advisable to seek guidance from experienced engineers or professionals who specialize in piping design and analysis to accurately determine the maximum stress that a steel pipe can withstand.
Q: What are the environmental impacts of steel pipe production?
The environmental impacts of steel pipe production include the extraction and processing of raw materials, such as iron ore and coal, which contribute to deforestation, habitat destruction, and air and water pollution. The manufacturing process also emits greenhouse gases and other pollutants, contributing to climate change and air pollution. Additionally, the disposal of waste materials and the potential for leaks or spills during transportation can harm ecosystems and water sources.
Q: Are steel pipes suitable for underground drainage systems?
Indeed, steel pipes prove to be a fitting choice for underground drainage systems. The multitude of qualities possessed by steel pipes contributes to their popularity in this field. Firstly, their robustness and endurance enable them to withstand high levels of pressure and heavy loads. Moreover, steel pipes are resistant to corrosion, which prolongs their lifespan and reduces the need for frequent maintenance or replacement. Furthermore, steel pipes possess the advantage of adaptability and versatility in various soil conditions. They can be easily customized to match the specific requirements of the drainage system, encompassing different diameters and lengths. Additionally, steel pipes can be welded together, ensuring a secure and tight connection that effectively prevents leakage and the infiltration of groundwater. Another benefit of utilizing steel pipes in underground drainage systems lies in their capability to handle a wide range of temperatures. Their resistance to extreme heat or cold renders them suitable for diverse climates and environments. Nevertheless, it is important to acknowledge that steel pipes can be more costly compared to alternative materials such as PVC or HDPE pipes. Additionally, their weight and installation process may pose challenges, necessitating specialized equipment and expertise. In conclusion, steel pipes provide a dependable and long-lasting solution for underground drainage systems, particularly in regions where durability and strength are vital considerations.
Q: How long is the seamless tube?
Generally finished seamless steel tubes are less than twelve meters, mainly for the convenience of shipment.In times of rolling (processing), the steel pipe can reach 80 meters or longer.
Q: How are steel pipes connected or joined together?
Steel pipes are commonly connected or joined together through welding, threading, or using pipe fittings such as couplings, flanges, or unions.
Q: How are steel pipes used in the water supply system?
Steel pipes are used in the water supply system to transport and distribute water efficiently and safely. They are durable, corrosion-resistant, and have a high carrying capacity, making them ideal for transporting large volumes of water over long distances. Steel pipes are commonly used for mains and transmission lines in water supply networks, ensuring a reliable and steady water flow to homes, businesses, and industries.
Q: What are the common uses of steel pipes in construction?
Due to their durability and strength, steel pipes are widely used in construction for various purposes. Plumbing systems in buildings commonly rely on steel pipes, which can effectively transport water, gas, and other fluids. Their resistance to corrosion and ability to withstand high pressure make them the preferred choice over alternative materials. Steel pipes are also frequently employed for structural support in construction. They serve as columns or beams, providing buildings with structural integrity and stability. With their capacity to support heavy loads, steel pipes are highly favored in the construction industry. Bridges and highways often incorporate steel pipes into their design. They are utilized to create sturdy and long-lasting bridge supports, guardrails, and signposts. The ability of steel pipes to endure extreme weather conditions and heavy traffic makes them a reliable option for infrastructure projects. Additionally, steel pipes are indispensable for underground utilities like sewer and drainage systems. They offer a robust solution for transporting wastewater and preventing leaks. Moreover, they play a crucial role in constructing underground tunnels and pipelines. Furthermore, steel pipes find application in fencing, scaffolding, and handrails in construction. Their strength, versatility, and ability to withstand harsh environmental conditions make them a preferred choice. In summary, steel pipes are vital components in construction due to their numerous advantages. Their durability, strength, and resistance to corrosion make them a reliable choice for various applications in the construction industry.
Q: What quota should be installed for heating seamless steel pipe?
Seamless steel pipe having a hollow cross section, used as a conduit for conveying fluids, such as pipelines for transporting petroleum, natural gas, gas, water, and certain solid materials.
Q: How are steel pipes used in the construction of stadiums and arenas?
Steel pipes are commonly used in the construction of stadiums and arenas for various purposes. They are primarily used for structural support, providing a sturdy framework for the buildings. Steel pipes are also used in the installation of plumbing systems, helping to transport water and other fluids throughout the facility. Additionally, steel pipes are utilized for the construction of ventilation and HVAC systems, ensuring proper air circulation and temperature control within the stadiums and arenas.
Q: How are steel pipes used in the manufacturing of wind turbines?
The manufacturing process of wind turbines relies heavily on steel pipes, which are essential components for constructing both the tower and the foundation. The tower, a tall and sturdy structure, is typically made by welding together large steel pipes. These pipes are responsible for providing the necessary strength and stability to bear the weight of the entire wind turbine and withstand the powerful forces generated by the rotating blades. Apart from the tower, steel pipes are also crucial in building the foundation of the wind turbine. The foundation requires a solid and stable base to ensure the turbine remains upright and secure. To achieve this, deep foundation piles made of thick-walled steel pipes are commonly used. These piles are driven deep into the ground to anchor the wind turbine and prevent it from toppling over. Furthermore, steel pipes are utilized in the transportation of the electricity generated by wind turbines. Once the wind energy is converted into electrical energy, it is transmitted through an internal electrical system to the base of the tower. From there, the electricity is often transferred through underground cables to a substation, where it is distributed into the power grid. Steel pipes are employed to protect and encase these cables, ensuring insulation and safe transmission of electricity. In summary, steel pipes play a critical role in wind turbine manufacturing by providing structural support, stability, and efficient electricity transmission. The durability and strength of steel make it an ideal material for enduring the harsh environmental conditions and immense forces associated with the operation of wind turbines.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords