• Hot Rolled Square Steel Billet 3SP Standard 170mm System 1
  • Hot Rolled Square Steel Billet 3SP Standard 170mm System 2
  • Hot Rolled Square Steel Billet 3SP Standard 170mm System 3
  • Hot Rolled Square Steel Billet 3SP Standard 170mm System 4
  • Hot Rolled Square Steel Billet 3SP Standard 170mm System 5
  • Hot Rolled Square Steel Billet 3SP Standard 170mm System 6
Hot Rolled Square Steel Billet 3SP Standard 170mm

Hot Rolled Square Steel Billet 3SP Standard 170mm

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Hot Rolled Square Steel Billet 3SP Standard 170mm  

 Hot Rolled Square Steel Billet 3SP Standard 170mm

Description of Hot Rolled Square Steel Billet 3SP Standard 170mm  

PPGI is made by cold rolled steel sheet and galvanized steel sheets as baseplate,  through the surface pretreatment (degreasing, cleaning, chemical conversion processing), coated by the method of continuous coatings (roller coating method), 

and after roasting and cooling. Zinc coating: Z60, Z80, Z100, Z120, Z180, Z275, G30, G60, G90
Alu-zinc coating: AZ60, AZ80, AZ100, AZ120, AZ180, G30, G60, G90 

 

Hot Rolled Square Steel Billet 3SP Standard 170mm

Main Feature of Hot Rolled Square Steel Billet 3SP Standard 170mm  

1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet.
2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings.
3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers.
4) Versatility: can be used in the various areas.
Standard seaworthy export packing: 3 layers of packing, inside is kraft paper, water plastic film is in the middle and outside GI steel sheet to be covered by steel strips with lock, with inner coil sleeve.

 

Applications of Hot Rolled Square Steel Billet 3SP Standard 170mm 

1) Automotive bodies: filters, fuel tanks, etc.

2) Construction materials: roofings, welding pipes,

3) Electric and electronic appliances: computer cans, etc.

4) Steel cans: containers, etc.

5) Steel furniture: washing machines, refrigerators, microwaves, etc.

6) Drums

7) Office equipment: printer, recorders, etc.

8) Motors and transformers

 Hot Rolled Square Steel Billet 3SP Standard 170mm

Specifications of Hot Rolled Square Steel Billet 3SP Standard 170mm  

Classified symbolYield Point Minimum N/mm2Tensile Strength MinimumElongation Minimum %Application
N/mm2Nominal Thickness mm (t)
JISYogic
0.25-0.40.4-0.60.6-1.01.0-1.6
G3312specification
CGCCCGCC-205-270-20-21-24-24Commercial
CGCDCGCD---270---273132Drawing
---CG34024534020202020Structural
CGC400CG40029540016171818Structural
CGC440CG44033544014151618Structural
CGC490CG49036549012131416Structural
CGC570CG570560570------------Structural









ASTM DesignationYield Point MinimumTensile Strength MinimumElongation Minimum %Application
Q/BQB 445-2004(China standard)ASM A653/A653MJISG 3312
ksi(MPa)ksi(MPa)
TDC51D+Z(CS TYPE A+Z)CGCC
A653(M)-99 CS TYPE A,B,C---------Commercial
TDC52D+Z
CGCD
A653(M)-99 FS---------Lock Forming
TS250GD+Z(G250+Z)-
A653(M)-99 DS---------Drawing
TS300GS+Z(G300+Z)CGC 400
A653(M)-99 SS Grade33(230)33(230)45(310)20Structural
TS350GD+Z(G350+Z)CGC490
A653(M)-99 SS Grade37(255)37(255)52(360)18Structural
TS550GD+Z(G550+Z)CGC570
A653(M)-99 SS Grade40(275)40(275)55(380)16Structural



A653(M)-99 SS Grade50(345)50(345)65(450)12Structural



A653(M)-99 SS Grade80(550)80(550)82(570)---Structural



FAQ of Hot Rolled Square Steel Billet 3SP Standard 170mm  

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  1, ISO, BV, CE, SGS approved.
  2, Competitive price and quality. 
  3, Efficient service team online for 24 hours. 
  4, Smooth production ability(50000tons/month) .
  5, quick delivery and standard exporting package. 
  6, Flexible payment with T/T, L/C, Paypal, Kunlun bank, etc.

Q:What are the specifications for steel billets used in the defense industry?
The defense industry utilizes different specifications for steel billets depending on the specific application and requirements. However, there are certain common specifications that are generally followed. First and foremost, high strength and durability are necessary for steel billets used in the defense industry to withstand extreme conditions and potential impacts. They typically need to possess a high tensile strength, usually above 500 MPa, and exceptional toughness to resist fracture or deformation. Moreover, good corrosion resistance properties are essential for steel billets used in the defense industry. This is crucial to ensure the longevity and reliability of defense equipment and structures, particularly when exposed to harsh environments or corrosive elements. Regarding dimensional specifications, precise dimensions and tolerances are typically required for steel billets used in the defense industry. This ensures compatibility and proper fitment during the manufacturing process and assembly of defense equipment. Additionally, strict quality control measures are implemented for steel billets used in the defense industry. They must comply with various industry standards and certifications, such as MIL-SPEC (Military Specifications), to guarantee the highest level of quality, performance, and safety. Finally, depending on the specific application, additional specifications such as heat treatment requirements, chemical composition, and non-destructive testing may also be specified for steel billets used in the defense industry. It is important to note that the exact specifications for steel billets used in the defense industry may vary based on the specific requirements of each defense project. Therefore, it is essential to consult the relevant defense industry standards and guidelines for accurate and up-to-date specifications.
Q:What are the different methods of corrosion protection for steel billets?
There exists a range of techniques for safeguarding steel billets against corrosion. Several commonly employed approaches include: 1. Coating: One highly effective means of corrosion protection involves applying a protective coating to the surface of steel billets. This can be accomplished through methods such as hot-dip galvanization, painting, or the application of a protective film. The coating acts as a barrier between the steel surface and corrosive elements in the surrounding environment, preventing direct contact and reducing the likelihood of corrosion. 2. Cathodic Protection: This method revolves around creating an electrochemical reaction to shield steel billets from corrosion. Cathodic protection can be achieved by utilizing sacrificial anodes or applying an impressed current. Sacrificial anodes, typically composed of zinc or magnesium, are connected to the steel billets and corrode sacrificially instead of the steel, thereby preserving it. Impressed current systems employ an external power source to supply the necessary current for steel protection. 3. VCI (Volatile Corrosion Inhibitors): VCI entails utilizing chemicals that emit vapors to establish a protective layer on the steel surface. These chemicals impede the corrosion process by neutralizing corrosive agents or forming a protective film on the steel surface. VCI can be implemented through various means, including coating, wrapping, or inserting VCI paper or packets into the packaging of steel billets. 4. Alloying: The introduction of alloying elements into the composition of steel billets can significantly enhance their corrosion resistance. For instance, the addition of chromium or nickel can augment the stainless properties of steel, rendering it more impervious to corrosion. Alloying can be performed during the initial production of steel billets or through post-treatment processes. 5. Environmental Control: The control of the environment in which steel billets are stored or utilized is of utmost importance in preventing corrosion. This encompasses measures such as maintaining appropriate humidity levels, avoiding exposure to corrosive chemicals or gases, and minimizing contact with water or moisture. By managing the environment, the likelihood of corrosion can be diminished, thereby safeguarding the steel billets. It is worth noting that the selection of a corrosion protection method hinges on various factors, including the expected extent of exposure to corrosive elements, the intended application of the steel billets, and cost considerations. Consequently, it is advisable to seek advice from corrosion experts or engineers to determine the most suitable method for a specific application.
Q:What are the typical dimensions and weight of steel billets?
The specific dimensions and weight of steel billets can differ depending on the requirements of the industry or application. However, as a general rule, steel billets are rectangular and have a length that is several times greater than its width and height. The width of steel billets usually falls within the range of 100mm to 200mm, while the height typically ranges from 100mm to 300mm. In terms of length, steel billets can measure anywhere between 3,000mm and 6,000mm. These dimensions may vary depending on the particular use, as different industries may have specific demands for their steel billets. In regards to weight, steel billets typically weigh anything from a few hundred kilograms to several metric tons. The weight is influenced by multiple factors, including the dimensions, density, and grade of steel utilized. It is vital to note that steel billets can be tailored to meet specific weight requirements, especially in industries such as construction, automotive, and manufacturing, where precise weight specifications are indispensable. In summary, the dimensions and weight of steel billets can fluctuate based on industry needs, but they generally maintain a rectangular shape and can range from a few hundred kilograms to several metric tons.
Q:What are the main applications of steel billets in the aerospace industry?
Steel billets possess exceptional strength, durability, and thermal properties, making them an indispensable component in the aerospace industry. Their numerous applications include the production of aircraft structural components, engine parts, fasteners and connectors, as well as hydraulic and pneumatic systems. A primary application of steel billets in the aerospace industry is seen in the manufacturing of aircraft structural components. These billets are commonly utilized to produce critical parts such as landing gear, wing spars, fuselage frames, and engine mounts. These components provide the necessary strength and stability required for safe and efficient flight. Furthermore, steel billets find use in the aerospace industry for the production of engine components. Their high heat resistance and ability to withstand extreme temperatures make them ideal for manufacturing turbine blades, shafts, and other critical parts within jet engines. These components must endure intense heat and pressure, and steel billets offer the required properties for reliable and efficient engine performance. Additionally, steel billets play a vital role in the aerospace industry by being applied in the production of fasteners and connectors. These components are crucial for securely joining various parts of an aircraft, ensuring structural integrity and safety during flight. Steel billets are employed to manufacture high-strength bolts, screws, and other fasteners, providing the necessary strength and reliability for aerospace applications. Moreover, steel billets are frequently used in the aerospace industry for the manufacture of hydraulic and pneumatic systems. These systems are responsible for controlling the movement of the aircraft, landing gear operation, and other critical functions. Steel billets are utilized to produce hydraulic cylinders, valves, and tubes, offering the required strength and resistance to withstand high pressures and extreme conditions. In conclusion, the aerospace industry heavily relies on steel billets for various applications, including aircraft structural components, engine parts, fasteners and connectors, as well as hydraulic and pneumatic systems. The exceptional strength, durability, and thermal properties of steel billets ensure the safety, efficiency, and reliability of aerospace operations.
Q:How are steel billets preheated before processing?
Steel billets can be preheated before processing using various methods depending on the specific requirements of the process and the type of equipment available. One common method is the use of natural gas or propane-fired furnaces. The billets are placed inside the furnace, and the temperature is gradually increased to the desired preheating temperature. Another method is the use of induction heating. This involves placing the billets inside a coil, and an alternating current is passed through the coil, which generates a magnetic field. This magnetic field induces electric currents within the billets, resulting in heat generation and preheating of the steel. Additionally, some preheating processes utilize electric resistance heating. In this method, the billets are placed between two electrodes, and an electric current is passed through the electrodes. The resistance to the flow of current generates heat, which preheats the steel billets. Preheating of steel billets is crucial as it helps to reduce the thermal shock experienced during subsequent processing steps. It also improves the overall efficiency of the process, as preheated billets require less energy to reach the desired processing temperature. Moreover, preheating helps to enhance the mechanical properties of the steel, making it easier to shape and manipulate during processing.
Q:How are steel billets used in the manufacturing of construction machinery parts?
Steel billets are crucial in the production of construction machinery parts. These semi-finished steel products serve as the raw material for shaping various machinery components. To initiate the manufacturing process, steel billets are heated to a high temperature in a furnace. This heating process enhances their malleability and facilitates further shaping. Once heated, the billets are passed through rollers and molds to achieve the desired shape and dimensions. Construction machinery parts such as gears, shafts, axles, and structural components require high strength and durability to withstand heavy-duty applications. Steel billets, made from high-quality steel alloys, possess these desirable properties, making them ideal for manufacturing such parts. After shaping, the billets undergo additional processes such as heat treatment and surface finishing. These treatments enhance their strength, hardness, and resistance to wear and corrosion. Consequently, the overall performance and longevity of the construction machinery parts are improved. The use of steel billets in the manufacturing of construction machinery parts offers several advantages. Firstly, steel is renowned for its excellent mechanical properties, including high tensile strength and toughness, which are vital for handling heavy loads and resisting impact and fatigue. Moreover, steel billets can be easily machined and welded, facilitating the precise manufacturing and assembly of complex machinery components. Additionally, steel is a versatile material that can be customized to meet specific requirements. By adjusting the composition and heat treatment processes, manufacturers can tailor the properties of the steel billets to suit the intended application of the construction machinery parts, ensuring optimum performance and durability. In conclusion, steel billets are indispensable in the production of construction machinery parts. Their high strength, durability, and versatility make them essential for manufacturing components that can withstand the demanding conditions of construction sites. By utilizing steel billets, manufacturers can create reliable and long-lasting machinery parts that contribute to the overall efficiency and safety of construction projects.
Q:What are the main factors affecting the wear resistance of steel billets?
The main factors affecting the wear resistance of steel billets can be categorized into several key aspects. First and foremost, the composition of the steel plays a crucial role. The presence of certain alloying elements, such as chromium, manganese, and molybdenum, significantly enhances the wear resistance of the steel. These elements form carbides and other compounds that create a hard and durable surface, capable of withstanding abrasive forces. Additionally, the microstructure of the steel is vital in determining its wear resistance. Fine-grained steels tend to have better wear resistance as the smaller grain size provides a more uniform and dense structure, reducing the likelihood of cracks and wear. Heat treatment processes, such as quenching and tempering, can be employed to further refine the microstructure and enhance the wear resistance. Surface finish is another vital factor influencing wear resistance. A smooth and well-polished surface reduces the friction between the steel billet and its surroundings, minimizing wear. Various machining techniques, such as grinding and polishing, can be employed to achieve the desired surface finish. Moreover, the hardness of the steel billet is a significant determinant of wear resistance. Hardness is typically measured using the Rockwell or Brinell scales, and higher hardness values generally indicate improved wear resistance. Heat treatment, alloying, and the addition of hardening agents can all contribute to increasing the hardness of the steel billet. Lastly, environmental factors also impact wear resistance. The presence of corrosive substances, high temperatures, or abrasive particles in the working environment can accelerate wear and reduce the lifespan of the steel billet. Employing appropriate coatings, such as chromium plating or thermal spraying, can mitigate these environmental effects and enhance wear resistance.
Q:What are the main factors affecting the fatigue strength of steel billets?
The fatigue strength of steel billets can be influenced by several key factors. 1. Material Composition: The fatigue strength of a steel billet depends on its composition, including the type and quantity of alloying elements present. Elements like carbon, manganese, and silicon have an impact on the billet's ability to resist fatigue and endure cyclic loading. 2. Surface Quality: The fatigue strength of steel billets is closely tied to their surface quality. Surface defects, such as cracks, scratches, or pits, can act as stress concentrators, leading to premature fatigue failure. Therefore, it is imperative to properly prepare and inspect the surface to ensure high fatigue resistance. 3. Heat Treatment: The fatigue strength of a steel billet can be significantly influenced by the heat treatment process used to modify its microstructure. Employing appropriate heat treatment techniques, like quenching and tempering, can enhance the billet's fatigue resistance by improving its hardness, strength, and toughness. 4. Grain Size: The fatigue strength of a steel billet is also affected by the grain size of its microstructure. Finer grains generally exhibit greater fatigue resistance due to reduced stress concentration and enhanced grain boundary strength. 5. Residual Stress: Residual stresses, which can arise from various manufacturing processes, play a crucial role in determining the fatigue strength of steel billets. Excessive residual stress can serve as a starting point for fatigue cracks, thereby diminishing the billet's fatigue life. 6. Operating Conditions: The fatigue strength of steel billets can be influenced by the conditions under which they operate. Factors such as the magnitude and frequency of applied cyclic loads, as well as the temperature, can all have a detrimental impact on the billet's fatigue life. 7. Environmental Factors: The environment in which a steel billet operates can also affect its fatigue strength. Variables like humidity, corrosive gases, and exposure to chemicals can accelerate the initiation and propagation of fatigue cracks, resulting in reduced fatigue resistance. Taking into account and comprehending these primary factors that impact the fatigue strength of steel billets is crucial when designing components and structures that can endure cyclic loading and ensure long-term reliability.
Q:How are steel billets shaped into other forms?
Steel billets are shaped into other forms through a process called hot or cold working. In hot working, the billets are heated to high temperatures and then shaped using various methods like rolling, forging, or extrusion. Cold working involves shaping the billets at room temperature through processes such as drawing, bending, or pressing. These techniques allow the steel billets to be transformed into different shapes and sizes according to the desired end product.
Q:How do steel billets contribute to the manufacturing of textile machinery?
Due to their mechanical properties and versatility, steel billets are crucial in the manufacturing of textile machinery. Essentially semi-finished steel products, they come in rectangular or square shapes and serve as raw material in various industries, including textile machinery manufacturing. The manufacturing of textile machinery greatly benefits from steel billets, particularly in the production of structural components. These components, such as frames and supports, require durability and sturdiness for stability and efficient functioning. Steel billets, with their high strength and rigidity, are an ideal choice for these components. They can be easily shaped, machined, or welded to create intricate and complex structures capable of withstanding the heavy loads and vibrations associated with textile machinery. Steel billets also find application in the production of moving parts like shafts and gears. These parts must possess excellent wear resistance, high tensile strength, and good machinability to ensure smooth operation and a long service life. Through processes such as forging, rolling, or machining, steel billets can be transformed into these crucial parts, providing the necessary mechanical properties and precision required in textile machinery. Furthermore, steel billets are extensively used in the manufacturing of tooling and molds for textile machinery production. These tools and molds are essential for shaping and forming various components. By subjecting steel billets to heat treatment and precise machining processes, they can be transformed into high-quality tooling and molds that offer exceptional dimensional accuracy and durability. This significantly contributes to the overall efficiency and quality of textile machinery production. In conclusion, steel billets play a pivotal role in textile machinery manufacturing by providing raw material for structural components, moving parts, and tooling. Their mechanical properties, versatility, and ease of fabrication make them indispensable in the industry. Steel billets ensure the durability, precision, and functionality of textile machinery, ultimately enhancing the overall performance and reliability of the equipment.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords