• High Yield Steel Deformed Bar of Building Material System 1
  • High Yield Steel Deformed Bar of Building Material System 2
  • High Yield Steel Deformed Bar of Building Material System 3
  • High Yield Steel Deformed Bar of Building Material System 4
  • High Yield Steel Deformed Bar of Building Material System 5
  • High Yield Steel Deformed Bar of Building Material System 6
High Yield Steel Deformed Bar of Building Material

High Yield Steel Deformed Bar of Building Material

Ref Price:
$300.00 - 500.00 / m.t. get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
100 m.t.
Supply Capability:
500000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar
Standard:
AISI,JIS,GB,BS,DIN,EN,ASTM
Thickness:
6mm
Technique:
Hot Rolled,Cold Rolled
Shape:
Round
Surface Treatment:
Galvanized,Black
Steel Grade:
RHB335,HRB400
Certification:
ISO,SGS
Length:
12m
Net Weight:
22kg

High Yield Steel Deformed Bar of Building Material


Description of High Yield Steel Deformed Bar

1, Diameter: 5.5mm-10mm High Yield Steel Deformed Bar

                       10m- 40mm High Yield Steel Deformed Bar

2, Length:  6m, 9m, 12m or customized

3, Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN

                    OEM technology - send detailed technical parameters for accurate quotation.

2, Produce Process: smelt iron - EAF smelt billet - ESR smelt billet - 

                                  hot rolled or forged to get the steel round bar and plate

3, Heat Treatment: annealing, normalizing, tempering, quenching

4, Surface Treatment: Black 

5, Quality Assurance: We accept third party inspection for all orders. 

     You can ask testing organizations such as SGS, BV, etc. to test our products before shipping.

 

Chemical Composition of High Yield Steel Deformed Bar

Grade

Technical data of the original chemical composition(%)

Reinforcing steel bar HRB335

C

Mn

Si

S

P

B

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 335

≥490

≥16

Reinforcing steel bar HRB400

C

Mn

Si

S

P

B

≤0.25

≤0.16

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 400

≥ 570

≥ 14


Products Show of High Yield Steel Deformed Bar

Astm 615 Bs4449 B500B Deformed Steel Rebars



Company Information

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Astm 615 Bs4449 B500B Deformed Steel RebarsAstm 615 Bs4449 B500B Deformed Steel Rebars 


F A Q

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q:Is special steel suitable for manufacturing molds and dies?
Yes, special steel is well-suited for manufacturing molds and dies due to its exceptional hardness, durability, and resistance to wear and deformation. Special steels like tool steel or high-speed steel possess superior mechanical properties, such as high tensile strength and toughness, making them ideal for withstanding the high pressure and temperature conditions involved in mold and die manufacturing processes. Additionally, special steels can be easily machined and heat-treated to achieve the desired hardness and precision required for creating intricate molds and dies.
Q:What are the different methods for improving the corrosion resistance of special steel?
There are several methods for improving the corrosion resistance of special steel. 1. Alloying: One of the most common methods is to add alloying elements to the steel composition. These elements, such as chromium, nickel, and molybdenum, form a protective layer on the surface of the steel, preventing corrosion. Stainless steel, for example, contains a high amount of chromium, which forms a passive film that protects the steel from corrosive environments. 2. Surface treatments: Various surface treatments can be applied to special steel to enhance its corrosion resistance. These treatments include electroplating, hot-dip galvanizing, and chemical passivation. Electroplating involves coating the steel with a layer of metal, such as zinc or nickel, which acts as a sacrificial anode, protecting the steel from corrosion. Hot-dip galvanizing involves immersing the steel in molten zinc, forming a durable, corrosion-resistant coating. Chemical passivation involves treating the steel with a solution that removes surface impurities and forms a protective oxide layer. 3. Protective coatings: Applying protective coatings can significantly improve the corrosion resistance of special steel. Coatings such as paint, epoxy, or polyurethane can act as a barrier, preventing moisture and corrosive substances from coming into contact with the steel surface. These coatings can be applied by spray, dip, or powder coating methods. 4. Heat treatment: Heat treatment can modify the microstructure of special steel, improving its corrosion resistance. Processes such as annealing, quenching, and tempering can alter the steel's properties, making it more resistant to corrosion. Heat treatment can also relieve internal stresses, which can contribute to corrosion. 5. Environmental control: Controlling the environment in which the special steel is used can also help improve its corrosion resistance. This includes measures such as maintaining proper humidity levels, controlling pH, avoiding exposure to corrosive chemicals, and implementing effective ventilation systems. By minimizing the exposure of special steel to corrosive elements, its corrosion resistance can be enhanced. Overall, a combination of these methods can be employed to improve the corrosion resistance of special steel, ensuring its longevity and performance in corrosive environments.
Q:How does special steel contribute to the overall economy?
Special steel contributes to the overall economy in several ways. Firstly, it plays a crucial role in various industries such as automotive, construction, and manufacturing, where it is used for producing high-performance components and structures. This fosters innovation, enhances productivity, and drives economic growth. Additionally, the production and processing of special steel create employment opportunities, both directly and indirectly, stimulating job growth and income generation. Moreover, special steel exports contribute to trade balance and foreign exchange earnings, further bolstering the economy. Overall, the utilization of special steel in diverse sectors strengthens industrial competitiveness, supports economic development, and fuels economic prosperity.
Q:What are the main applications of special steel in the defense vehicles?
Special steel is used in defense vehicles for various critical applications. It is particularly important in the manufacturing of armor plates, which provide protection to military vehicles against ballistic threats. Special steel is also used in the production of components like suspension systems, axles, and chassis, ensuring durability and strength in harsh conditions. Additionally, it is utilized in the construction of weapon systems, such as missile launchers and gun barrels, due to its high tensile strength and resistance to extreme temperatures. Overall, special steel plays a crucial role in enhancing the performance and survivability of defense vehicles.
Q:Can special steel be used for making automotive engine components?
Yes, special steel can be used for making automotive engine components. This type of steel offers enhanced strength, durability, and heat resistance, making it suitable for critical engine parts such as crankshafts, connecting rods, valves, and camshafts. Special steel helps improve engine performance, efficiency, and longevity, making it a preferred choice in the automotive industry.
Q:What are the different special steel products available in the market?
In the market, one can find a wide range of special steel products that are specifically designed to meet various industrial needs. Some commonly used special steel products include: 1. Stainless Steel: This particular steel alloy is highly resistant to corrosion due to its minimum chromium content of 10.5%. It finds extensive use in applications that demand exceptional corrosion resistance, such as kitchen utensils, medical instruments, and chemical processing equipment. 2. Tool Steel: Tool steel is a type of carbon and alloy steel that is exclusively manufactured for tool production. It is renowned for its high hardness, resistance to abrasion, and ability to maintain sharp edges. Tool steel is widely employed in the fabrication of cutting tools, dies, and molds. 3. Alloy Steel: Alloy steel is a type of steel that has been blended with other elements like manganese, silicon, nickel, or chromium to enhance its mechanical properties. It offers superior strength, toughness, and wear resistance compared to carbon steel. Alloy steel is used in various applications, including automotive components, construction equipment, and machinery parts. 4. High-Speed Steel: High-speed steel is a variant of tool steel that exhibits the ability to cut at high speeds without compromising its hardness or its ability to retain sharp edges. It is commonly utilized in the production of drills, milling cutters, and saw blades. 5. Spring Steel: Spring steel is a low-alloy, medium or high carbon steel that possesses remarkable shape retention and elasticity even under high stress or repeated loadings. It finds extensive use in the manufacturing of springs, suspension systems, and shock absorbers. 6. Electrical Steel: Electrical steel, also known as silicon steel, is an exceptional steel alloy that demonstrates low electrical losses and high magnetic permeability. It is employed in the fabrication of electrical transformers, motors, and generators. 7. Heat-Resistant Steel: Heat-resistant steel is specifically engineered to withstand high temperatures without compromising its mechanical properties. It is commonly utilized in applications such as furnaces, heat exchangers, and gas turbines. These examples merely scratch the surface of the wide array of special steel products available in the market. The selection of a particular steel product depends on the specific requirements of the application, including factors like corrosion resistance, strength, hardness, and heat resistance.
Q:Can special steel be used in the production of springs?
Yes, special steel can be used in the production of springs. Special steel, such as alloy steel or high carbon steel, is often preferred for spring manufacturing due to its excellent strength, durability, and elasticity properties. This type of steel allows for the production of springs that can withstand high stress, maintain their shape, and provide reliable performance over an extended period of time.
Q:How does special steel contribute to the power generation sector?
Special steel plays a crucial role in the power generation sector by offering various benefits and contributing to the overall efficiency and reliability of power generation equipment. One of the primary ways special steel contributes is through its superior strength and durability. Power generation involves highly demanding and extreme conditions, including high temperatures, pressure, and corrosive environments. Special steel is specially designed to withstand these harsh conditions and maintain its structural integrity, ensuring the long-term reliability and safety of power generation equipment. Special steel is used in various components of power generation equipment, such as turbines, boilers, and generators. In gas turbines, for example, special steel is utilized for the construction of turbine blades and vanes, which are subjected to immense heat and rotational forces. The high-temperature resistance and strength of special steel allow these components to operate at elevated temperatures without deformation or failure, thereby increasing the efficiency and performance of gas turbines. Moreover, special steel offers excellent corrosion resistance, making it suitable for use in power plants that utilize water-based cooling systems. These cooling systems often employ seawater or chemically treated water, which can be highly corrosive. By using special steel in critical components like condensers and heat exchangers, the power generation sector can significantly reduce maintenance and replacement costs associated with corrosion-related issues. Additionally, special steel is crucial in the construction of nuclear power plants. It is used in the fabrication of reactor pressure vessels, steam generators, and fuel assemblies. The radiation resistance and high strength of special steel ensure the safety and reliability of these components in nuclear power plants, thereby contributing to the overall efficiency and sustainability of the power generation sector. In summary, special steel's superior strength, high-temperature resistance, corrosion resistance, and radiation resistance make it an indispensable material in the power generation sector. It enhances the efficiency, reliability, and safety of power generation equipment, ultimately contributing to the overall growth and sustainability of the power generation industry.
Q:How is high-temperature steel used in power generation equipment?
High-temperature steel is used in power generation equipment due to its exceptional heat resistance properties. It is specifically employed in components such as boiler tubes, turbine blades, and exhaust systems, where intense heat and pressure are present. This steel's ability to withstand extreme temperatures ensures efficient energy conversion and maximizes the overall performance and reliability of power generation equipment.
Q:What are the challenges in surface treating special steel?
Some of the challenges in surface treating special steel include achieving uniform and consistent coatings, ensuring adhesion of the coating to the steel substrate, overcoming the high hardness of the steel, preventing distortion or warping during the treatment process, and managing the potential for thermal degradation or oxidation. Additionally, the presence of unique alloying elements in special steel may require specialized treatment techniques to achieve the desired surface properties.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords