High Yield Steel Deformed Bar of Building Material

Ref Price:
$300.00 - 500.00 / m.t.
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
100 m.t.
Supply Capability:
500000 m.t./month
  • OKorder Service Pledge
  • Quality Product
  • Order Online Tracking
  • Timely Delivery
  • OKorder Financial Service
  • Credit Rating
  • Credit Services
  • Credit Purchasing

Add to My Favorites

Follow us:

Item specifice

Type:
Carbon Steel
Shape:
Steel Round Bar
Standard:
AISI,JIS,GB,BS,DIN,EN,ASTM
Thickness:
6mm
Technique:
Hot Rolled,Cold Rolled
Shape:
Round
Surface Treatment:
Galvanized,Black
Steel Grade:
RHB335,HRB400
Certification:
ISO,SGS
Length:
12m
Net Weight:
22kg

High Yield Steel Deformed Bar of Building Material


Description of High Yield Steel Deformed Bar

1, Diameter: 5.5mm-10mm High Yield Steel Deformed Bar

                       10m- 40mm High Yield Steel Deformed Bar

2, Length:  6m, 9m, 12m or customized

3, Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN

                    OEM technology - send detailed technical parameters for accurate quotation.

2, Produce Process: smelt iron - EAF smelt billet - ESR smelt billet - 

                                  hot rolled or forged to get the steel round bar and plate

3, Heat Treatment: annealing, normalizing, tempering, quenching

4, Surface Treatment: Black 

5, Quality Assurance: We accept third party inspection for all orders. 

     You can ask testing organizations such as SGS, BV, etc. to test our products before shipping.

 

Chemical Composition of High Yield Steel Deformed Bar

Grade

Technical data of the original chemical composition(%)

Reinforcing steel bar HRB335

C

Mn

Si

S

P

B

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 335

≥490

≥16

Reinforcing steel bar HRB400

C

Mn

Si

S

P

B

≤0.25

≤0.16

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 400

≥ 570

≥ 14


Products Show of High Yield Steel Deformed Bar

Astm 615 Bs4449 B500B Deformed Steel Rebars



Company Information

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Astm 615 Bs4449 B500B Deformed Steel RebarsAstm 615 Bs4449 B500B Deformed Steel Rebars 


F A Q

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q:
Special steel plays a crucial role in enhancing the performance of industrial machinery in various ways. Firstly, special steel possesses superior mechanical properties such as high strength, hardness, and toughness, which make it suitable for withstanding heavy loads, vibrations, and impact forces commonly encountered in industrial applications. This enables the machinery to operate efficiently and reliably under demanding conditions. Moreover, special steel has excellent corrosion resistance, which is particularly important in industries where machinery is exposed to harsh environments or corrosive substances. By preventing the degradation of components due to corrosion, special steel helps to extend the lifespan of the machinery and reduce maintenance costs. Additionally, special steel can be tailored to specific applications through various alloying elements and heat treatments. This allows manufacturers to optimize the material's properties to meet the specific requirements of the industrial machinery, such as wear resistance, heat resistance, or high-temperature strength. By using special steel, manufacturers can achieve higher performance levels and improve the overall efficiency of their machinery. Furthermore, special steel offers superior dimensional stability and machinability. This ensures that components can be manufactured to precise specifications, thereby reducing the potential for errors or inaccuracies that may affect the performance of the machinery. The machinability of special steel also allows for easier fabrication and assembly, improving the overall production process and reducing manufacturing costs. In conclusion, special steel contributes significantly to the performance of industrial machinery through its superior mechanical properties, corrosion resistance, tailorability, dimensional stability, and machinability. By utilizing special steel in the construction of machinery components, manufacturers can enhance the durability, reliability, and efficiency of their products, ultimately leading to improved productivity and profitability in various industries.
Q:
There are several methods of joining special steel, each with its own advantages and limitations. Some of the most common methods include: 1. Welding: This is the most widely used method of joining steel. It involves melting the base material and adding a filler material to create a strong bond. Different welding techniques such as arc welding, gas welding, and laser welding can be used depending on the specific requirements. 2. Brazing: This method involves heating the steel and melting a filler metal with a lower melting point, which then flows into the joint by capillary action. Brazing is often used when joining dissimilar metals or when a lower-temperature joining process is needed. 3. Soldering: Similar to brazing, soldering also uses a lower melting point filler material to join the steel. However, soldering involves melting the filler material without melting the base material. It is commonly used for electrical connections and delicate applications. 4. Mechanical fastening: This method involves joining the steel components using mechanical means such as bolts, screws, rivets, or other types of fasteners. Mechanical fastening is often preferred in situations where disassembly or maintenance is required. 5. Adhesive bonding: Special steel can also be joined using adhesives that create a strong bond between the surfaces. Adhesive bonding is suitable for joining complex shapes, reducing stress concentrations, and providing excellent corrosion resistance. 6. Friction welding: This technique involves rubbing or spinning two steel components together under pressure to generate heat, which then creates a bond. Friction welding is commonly used for joining high-strength or heat-treated steels. 7. Explosive welding: This method involves using explosives to create a high-speed collision between two steel surfaces, resulting in a solid-state bond. Explosive welding is often used for joining dissimilar metals or when high strength and corrosion resistance are required. The choice of joining method depends on factors such as the type of steel, the desired strength and durability of the joint, the specific application requirements, and the available equipment and expertise.
Q:
Case-hardening steel is used in the manufacturing of gears to increase their hardness and durability. This process involves adding a thin layer of hard and wear-resistant material on the surface of the gear, while maintaining a tougher and more flexible core. The case-hardened gears can withstand higher loads, resist wear and fatigue, and have a longer lifespan, making them ideal for demanding industrial applications.
Q:
Making renewable energy equipment is possible using special steel. Special steel, also referred to as high-performance or alloy steel, possesses various properties that make it appropriate for use in different renewable energy applications. For instance, in wind energy, special steel finds utility in crafting wind turbine components, including rotor blades, tower structures, and drive train systems. The durability and longevity of these components are ensured by the high strength and corrosion resistance of special steel, as they are consistently exposed to harsh weather conditions and mechanical stress. In solar energy, special steel can be employed in the construction of solar panels, support structures, and tracking systems. The material's exceptional thermal conductivity and resistance to deformation make it an ideal choice for effectively capturing and converting solar energy into electricity. Moreover, special steel can be utilized in the production of hydroelectric power equipment, such as turbine blades, runners, and penstocks. These components are designed to withstand the forces and pressures associated with water power generation, and special steel's high tensile strength and resistance to erosion and cavitation make it suitable for this purpose. Furthermore, in the realm of biomass energy, special steel can be used in the fabrication of bioenergy plants and equipment. Its ability to withstand high temperatures and resist corrosion makes it suitable for handling the corrosive substances and high temperatures involved in the biomass conversion process. Overall, special steel's unique combination of strength, durability, corrosion resistance, and thermal properties makes it an excellent option for manufacturing renewable energy equipment, thereby contributing to the development and sustainability of the renewable energy industry.
Q:
Corrosion-resistant castings are designed to withstand the damaging effects of corrosion, a natural process that deteriorates the surface of metals due to chemical reactions. These castings possess several main characteristics that make them resistant to corrosion. Firstly, corrosion-resistant castings are made from specific alloys or materials that are inherently resistant to corrosion. These materials may include stainless steel, nickel-based alloys, or high-performance alloys like Inconel or Hastelloy. These alloys contain elements such as chromium, molybdenum, or nickel that form a protective layer on the surface of the casting, preventing the corrosive agents from reaching the underlying metal. Secondly, these castings are produced using meticulous casting techniques that ensure a dense and defect-free structure. This is vital in preventing the penetration of corrosive substances into the casting. Techniques such as investment casting or vacuum casting are commonly employed to achieve a high level of precision and quality. Another important characteristic of corrosion-resistant castings is their ability to resist various types of corrosion, including general corrosion, pitting corrosion, crevice corrosion, and stress corrosion cracking. General corrosion refers to the gradual, uniform deterioration of the metal surface, while pitting corrosion creates localized holes or pits. Crevice corrosion occurs in confined spaces, such as gaps or joints, and stress corrosion cracking results from the combined effects of stress and a corrosive environment. Corrosion-resistant castings are designed to withstand all these corrosion types, ensuring long-term durability and reliability. Furthermore, corrosion-resistant castings often undergo additional surface treatments or coatings to enhance their resistance to corrosion. These treatments may include passivation, where the surface is chemically treated to form a protective oxide layer, or the application of protective coatings such as epoxy or polyurethane. These treatments provide an extra layer of defense against corrosive agents, extending the lifespan of the casting. In summary, the main characteristics of corrosion-resistant castings are the use of corrosion-resistant alloys, meticulous casting techniques, resistance to various types of corrosion, and the application of surface treatments or coatings. These characteristics ensure that these castings can withstand harsh environments and maintain their structural integrity over time, making them ideal for applications where corrosion is a significant concern.
Q:
Special steel is designed to perform exceptionally well under extreme temperatures. It has high heat resistance, maintaining its strength and structural integrity even when exposed to extreme heat or cold. This makes it suitable for various applications, such as in aerospace, automotive, and power generation industries, where it can withstand the demanding conditions of extreme temperatures without compromising its performance.
Q:
Some common surface treatments applied to special steel include galvanizing, powder coating, chrome plating, and nickel plating. These treatments enhance the steel's corrosion resistance, durability, and aesthetics.
Q:
Special steel is commonly used in the food processing industry due to its unique properties such as corrosion resistance and high strength. It is used to manufacture various equipment and components such as knives, blades, cutting tools, mixing machines, and conveyor belts. These specialized steel products ensure food safety, improve processing efficiency, and maintain high hygiene standards in the industry.
Q:
Special steel is highly valued in nuclear applications due to its exceptional properties and performance. Nuclear reactors operate under extreme conditions, including high temperatures, high pressures, and exposure to radiation. Special steel, also known as nuclear-grade steel or reactor-grade steel, is specifically designed to withstand these demanding conditions. One of the key characteristics of special steel is its excellent strength and toughness. This allows it to resist deformation and fracture even under the intense stress and pressure found in nuclear reactors. Special steel also exhibits superior heat resistance, enabling it to maintain its structural integrity at elevated temperatures. This is crucial for preventing any potential failures or structural damage that could jeopardize the safety and efficiency of the nuclear system. Furthermore, special steel possesses remarkable resistance to corrosion and oxidation. Nuclear reactors contain highly corrosive environments due to the presence of various chemical compounds and high-temperature water or steam. The corrosion resistance of special steel ensures the longevity and reliability of the reactor components, while also minimizing the risk of radioactive material release. In addition, special steel is designed to have low neutron absorption properties. Neutron absorption can lead to the formation of unwanted isotopes, which could interfere with the nuclear reactions or contribute to the production of radioactive waste. By reducing neutron absorption, special steel helps to optimize the performance and efficiency of the nuclear system. Overall, special steel is a critical material in nuclear applications as it provides the necessary strength, heat resistance, corrosion resistance, and low neutron absorption required for safe and efficient operation of nuclear reactors. Its exceptional performance ensures the integrity of the system, minimizes the risk of accidents, and contributes to the overall sustainability of nuclear energy.
Q:
Special steel is used in the manufacturing of industrial machinery due to its exceptional properties such as high strength, hardness, and resistance to wear and corrosion. It is commonly used to create components like gears, shafts, and bearings, which are critical for the smooth and efficient functioning of machinery. Additionally, special steel can withstand extreme temperatures and pressures, making it suitable for applications in heavy-duty machinery and equipment, ensuring reliability and durability in industrial settings.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request