• High Quality Deformed Steel Bar For Construction System 1
  • High Quality Deformed Steel Bar For Construction System 2
  • High Quality Deformed Steel Bar For Construction System 3
High Quality Deformed Steel Bar For Construction

High Quality Deformed Steel Bar For Construction

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

 

OKorder is offering High Quality Deformed Steel Bar For Construction at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

High Quality Deformed Steel Bar For Construction are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's High Quality Deformed Steel Bar For Construction are durable, strong, and wide variety of sizes.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: HRB335

Size: 6mm-25mm

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

B

HRB335

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation (%)

≥335

≥490

≥16

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation (%)

≥400

≥570

≥14

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: what is the difference between actual weight and theoretical weight?

A3: All the section steel has two weights: actual weight and theoretical weight. Actual weight is the weighing out when the product delivered from the mill. Theoretical weight is calculated by pieces.  The invoice can be based on each of them as your request.

.

 

Images:

Q:What is the role of steel rebars in preventing concrete spalling?
The prevention of concrete spalling is highly dependent on the presence of steel rebars. Concrete spalling occurs when the surface layer of concrete chips, cracks, or breaks due to various factors such as moisture, temperature changes, and corrosion. Steel rebars, also known as reinforcement bars, are embedded within the concrete to offer additional strength and support to the structure. When external forces or stress impact the concrete, such as heavy loads or seismic activity, the rebars assist in distributing the forces evenly throughout the structure. This prevents concentrated weak areas and reduces the chances of spalling. The rebars act as reinforcements, increasing the concrete's tensile strength and its ability to withstand tension and bending forces. Furthermore, steel rebars are instrumental in preventing spalling caused by corrosion. Concrete naturally has pores, allowing moisture and harmful substances to penetrate its surface and reach the embedded rebars. Over time, these substances can cause the steel to corrode, expanding and exerting pressure on the surrounding concrete, leading to spalling. To address this issue, rebars are typically coated with epoxy, galvanized, or made from stainless steel. These coatings serve as protective barriers against moisture and corrosive agents. The presence of this protective coating significantly reduces the risk of corrosion and subsequent spalling, thereby extending the lifespan of the concrete structure. In conclusion, steel rebars have a crucial role in preventing concrete spalling by providing reinforcement, enhancing the concrete's tensile strength, and distributing forces evenly throughout the structure. Additionally, properly coated rebars with corrosion-resistant properties help mitigate the risk of spalling caused by moisture and corrosive agents.
Q:How do steel rebars affect the overall durability of concrete?
Concrete structures benefit greatly from the presence of steel rebars, as they significantly contribute to their overall durability. Steel rebars enhance the strength of concrete and its ability to resist external forces and environmental conditions. One of the main functions of steel rebars is to provide tensile strength to concrete, which is naturally weak in resisting tension. Concrete is known for its excellent compressive strength but tends to crack under tension. By embedding steel rebars within the concrete, these cracks are effectively controlled and prevented from expanding, ultimately improving the durability of the structure. Steel rebars also increase the flexural strength of concrete, allowing it to withstand bending and deformations more effectively. This is particularly important in structures such as beams, columns, and slabs that experience significant loads and forces throughout their lifespan. Furthermore, steel rebars act as reinforcement in concrete, enhancing its resistance to external factors like earthquakes, wind, and impact loads. The presence of rebars helps distribute and dissipate these forces throughout the structure, reducing the risk of structural failure and increasing overall durability. Another crucial aspect is the prevention of corrosion in reinforced concrete structures. Steel rebars are typically coated with materials that protect them from corrosion caused by moisture and chemical reactions. This protective coating, combined with the alkaline environment of concrete, forms a barrier that significantly slows down the corrosion process, ultimately increasing the longevity and durability of the concrete structure. To conclude, steel rebars play a vital role in enhancing the overall durability of concrete structures. They provide necessary tensile strength, improve flexural strength, enhance resistance to external forces, and prevent corrosion. Incorporating steel rebars makes concrete more robust, long-lasting, and capable of withstanding various challenges, ensuring the longevity and safety of the structure.
Q:What are the guidelines for the proper spacing of steel rebars in beams?
The guidelines for the proper spacing of steel rebars in beams are determined by engineering standards and codes. These guidelines ensure the structural integrity and strength of the beam. Here are some general guidelines to consider: 1. Rebar spacing: The spacing between rebars should be such that it allows for proper concrete placement and consolidation. Typically, the spacing is measured in terms of rebar diameter or as a percentage of the beam depth. The specific spacing requirements may vary based on factors such as the beam size, load requirements, and design specifications. 2. Minimum and maximum spacing: There are usually minimum and maximum spacing requirements for rebars in beams. The minimum spacing ensures proper concrete cover around the rebar to protect it from corrosion and provide fire resistance. The maximum spacing helps in distributing the loads evenly and prevents excessive cracking of the concrete. 3. Concrete cover: The rebars should be adequately covered by concrete to provide protection against corrosion and provide fire resistance. The concrete cover is the distance between the outer surface of the rebar and the edge of the beam. The required concrete cover is specified in engineering codes and is based on factors such as exposure conditions, durability requirements, and fire ratings. 4. Spacing around supports and openings: Special attention should be given to the spacing of rebars around supports such as columns and walls, as well as around openings like doorways or windows. These areas may experience higher stresses and require additional reinforcement. Engineering codes provide specific requirements for these situations, taking into account the size and shape of the supports or openings. 5. Lateral and longitudinal reinforcement: In addition to the spacing of rebars along the length of the beam (longitudinal reinforcement), beams may require additional reinforcement in the form of stirrups or ties (lateral reinforcement). These elements provide resistance against shear forces and help in preventing diagonal cracking. The spacing and size of these additional reinforcement elements are determined based on the design requirements and load conditions. It is important to note that the specific guidelines for spacing of steel rebars in beams may vary depending on regional building codes, project specifications, and engineering standards. Therefore, it is crucial to consult with a qualified structural engineer or refer to the applicable building codes and design documents for accurate and up-to-date guidelines.
Q:What is the purpose of ribbed steel rebars?
The purpose of ribbed steel rebars is to provide reinforcement and strength to concrete structures, such as buildings, bridges, and foundations. The ribs on the rebar help to increase the bond between the steel and the concrete, preventing slippage and enhancing the overall stability and durability of the structure.
Q:How do steel rebars provide strength to concrete structures?
Steel rebars provide strength to concrete structures by acting as reinforcement. When embedded within the concrete, rebars enhance its tensile strength, which is otherwise low. As concrete is strong in compression but weak in tension, the rebars resist the tensile forces that can cause cracking or failure in the structure. By distributing and absorbing these tensile forces, steel rebars increase the overall strength, durability, and structural integrity of the concrete.
Q:How are steel rebars used in construction?
Construction projects rely heavily on steel rebars, also known as reinforcing bars, to ensure the strength and stability of concrete structures. These rebars are strategically placed within the concrete formwork in a grid pattern before the concrete is poured. This grid formation effectively distributes tensile forces, preventing cracks and improving structural integrity. To achieve optimal reinforcement and withstand anticipated loads, rebars are placed at specific locations within the concrete elements. They are spaced apart at predetermined intervals, following design and engineering specifications. During the concrete pouring process, the wet concrete envelopes the rebars, establishing a strong bond between the two materials. As the concrete hardens and cures, it firmly grips the rebars, creating a composite structure capable of withstanding bending, shearing, and other types of stress. Steel rebars come in various sizes and grades, tailored to meet the unique requirements of each construction project. Typically made from carbon steel, they may have different surface finishes to enhance their bonding capabilities with concrete. In addition to providing strength, rebars also play a vital role in controlling cracking caused by shrinkage, temperature changes, and external forces. By absorbing and distributing these forces, they minimize the risk of structural failure, ensuring the overall stability and durability of concrete components. In summary, steel rebars are indispensable in construction as they reinforce concrete structures, increase load-bearing capacity, and prolong the lifespan of buildings and infrastructure. Proper placement and utilization of rebars are crucial for building resilience, ensuring safety, and maintaining structural integrity.
Q:Can steel rebars be used in seismic-resistant structures?
Yes, steel rebars can be used in seismic-resistant structures. Steel rebars have excellent tensile strength and ductility, making them an ideal reinforcement material for concrete structures in earthquake-prone areas. When properly designed and installed, steel rebars can help increase the structural integrity and resistance of buildings to seismic forces. They provide additional strength and flexibility to the concrete, allowing it to better withstand the lateral and vertical loads exerted during an earthquake. Moreover, steel rebars can effectively dissipate and absorb the energy generated during seismic events, reducing the potential for structural damage or collapse.
Q:What is the specific concept of thread steel through water and what is the difference?
Most of the thread steel is subjected to self - tempering after water cooling, and the tempered bainite is obtained. The advantage is that the strength will be better; the disadvantage is that after rolling through water, the surface oxide film of steel is destroyed, rust is sure
Q:What is the impact of steel rebars on the overall sustainability of a structure?
Steel rebars have a significant impact on the overall sustainability of a structure. They enhance the strength and durability of the construction, ensuring its longevity and reducing the need for frequent repairs or replacements. Additionally, steel rebars can be recycled at the end of a structure's life, minimizing waste and reducing the demand for raw materials. This sustainable aspect contributes to the overall environmental footprint of the structure and promotes a more sustainable construction industry.
Q:What are the guidelines for spacing and positioning steel rebars in concrete structures?
The guidelines for spacing and positioning steel rebars in concrete structures vary depending on factors such as the type of structure, its design requirements, and the specific project specifications. However, some general guidelines include maintaining proper cover (distance between the rebar and the concrete surface), ensuring adequate spacing between rebars to allow for proper concrete flow and consolidation, and properly securing the rebars in place to prevent movement during concrete pouring and curing. Additionally, the positioning and arrangement of rebars should follow the structural engineer's design and reinforcement drawings to ensure the desired strength and structural integrity of the concrete structure. It is crucial to consult and adhere to local building codes and regulations as they may provide specific requirements for rebar spacing and positioning in different applications.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords