• High Quality Spring Steel Round Bar 12-16mm System 1
  • High Quality Spring Steel Round Bar 12-16mm System 2
  • High Quality Spring Steel Round Bar 12-16mm System 3
High Quality Spring Steel Round Bar 12-16mm

High Quality Spring Steel Round Bar 12-16mm

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
100 m.t
Supply Capability:
10000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

High Quality Spring Steel Round Bar 12-16mm

Product Description:

Spring Steel can be divided into two types. One is carbon spring steel, and other one is alloy spring steel.

Alloy spring steel is based on carbon spring steel, by adding one or more alloying elements to improve the mechanical properties, hardenability and other properties to meet the requirement for manufacture all kinds of spring steel.

 

Specification of High Quality Spring Steel Round Bar 12-16mm:

-Material: 1065

-Standard: ASTM

-Production: Hot rolled or cold rolled

-Type: Spring Steel

 

Diameter(mm)Mass(kg/m)Section(mm2)
120.888113.04
151.39176.625
161.58200.96

 

 

Corresponding Steel Grade of High Quality Spring Steel Round Bar 12-16mm for Reference:

USA, ASTM

CHN, GB/T

JPN, JIS

ISO

1065

65

 SWRH67A

     SWRH67B

Type SC

     Type DC

FRA, NF

GBR, BS

C66D

C66D

 

Chemical Composition of High Quality Spring Steel Round Bar 12-16mm:

C

Mn

Ni

Si

0.62~0.70

0.50~0.80

≤0.30

0.17~0.37

P

S

Cr

Cu

≤0.035

≤0.035

≤0.25

≤0.25

 

Mechanical Properties of High Quality Spring Steel Round Bar 12-16mm:

-Tensile Strength σb (MPa): ≥695

-Yield Strength σs (MPa): ≥410

-Elongation δ10(%): ≥10

-Percentage reduction of area: ψ (%): ≥30

-Hardness HBS, no heat treatment: ≤255

 

Usage/Applications of High Quality Spring Steel Round Bar 12-16mm:

-ASTM1065, is medium-high carbon spring steel. After heat treatment, this type of steel obtains high strength, hardness and elasticity but this material isn’t perfect for welding.

-Its fatigue strength is equal to alloy spring steel when they are in same configuration.

-For manufacturing spring, spring circle, all kinds of grommet, clutch, and axels in the production of normal machine.

 

Packaging & Delivery of High Quality Spring Steel Round Bar 12-16mm:

-Packing Detail: The products can be packed in bundles by steel wires.

-Marks: There are two types of marks. One is color mark and other one is tag mark. We paint color marks on both ends of bundles to make sure that it’s more convenient for customers to distinguish their products from other products at the destination port. The tag marks will be tied up to each bundle to make sure that customers know the specifications of each bundle like product’s name and size and other information of products.

-Delivery Detail:

1, Delivery time: 30~60 working days after receive buyer’s T.T. or L/C.

2, Delivery status should be written in the contract. (Heat treatment or no)

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will arrange production. The shipping date is dependent upon the quatity, how many sizes you want and the plan of production, but is typically 1 month to 2 month days from the beginning of production.

  

Images of High Quality Spring Steel Round Bar 12-16mm:

 

*If you would like to get our price, please inform us the size, standard/material and quantity. Thank you very much for your attention.

Q:How is case-hardening steel used in the production of gears and camshafts?
Case-hardening steel is used in the production of gears and camshafts to enhance their strength and durability. This process involves heating the steel to a high temperature and then rapidly cooling it, creating a hard outer layer while maintaining a softer, more ductile core. This hardened surface layer provides resistance to wear, abrasion, and fatigue, ensuring the gears and camshafts can handle the demands of their respective applications.
Q:What are the specific requirements for special steel used in the aerospace fastener industry?
The specific requirements for special steel used in the aerospace fastener industry include high strength and hardness, excellent resistance to corrosion and fatigue, as well as the ability to withstand extreme temperatures and pressure conditions. Additionally, the steel must have good formability and machinability to ensure precise manufacturing of fasteners. It should also meet stringent industry standards and undergo thorough testing and certification processes to ensure reliability and safety in aircraft applications.
Q:How does special steel perform under extreme temperatures?
Special steel is specifically designed to perform well under extreme temperatures. It exhibits excellent strength, hardness, and resistance to heat, making it highly suitable for applications that involve extreme heat or cold. At high temperatures, special steel maintains its structural integrity, which means it does not undergo significant deformation or loss of strength. It retains its hardness and dimensional stability, ensuring that it can withstand the extreme conditions without compromising its performance. Special steel also demonstrates exceptional resistance to thermal expansion and contraction, which is crucial when exposed to extreme temperature changes. This property allows the steel to expand and contract uniformly, minimizing the risk of cracking or other forms of damage. Moreover, special steel possesses excellent heat resistance, enabling it to retain its mechanical properties even at elevated temperatures. It exhibits high creep resistance, which is the ability to resist deformation under constant stress at high temperatures. This ensures that the steel can withstand prolonged exposure to extreme heat without experiencing failure or degradation. In addition to its impressive performance at high temperatures, special steel also performs well under extremely low temperatures. It maintains its toughness and ductility, with minimal risk of embrittlement or cracking. This makes it suitable for applications in cryogenic environments, such as in the aerospace or medical industries. Overall, special steel is designed to excel under extreme temperatures, offering exceptional strength, hardness, and resistance to heat. Its ability to maintain its structural integrity, resist thermal expansion and contraction, and withstand high or low temperatures makes it a reliable choice for various demanding applications.
Q:How does special steel withstand high-velocity impacts?
Special steel is able to withstand high-velocity impacts due to its exceptional strength and toughness. It is specifically engineered to have enhanced mechanical properties, such as increased hardness and resistance to deformation. This allows the steel to absorb and distribute the energy from the impact, minimizing the risk of fractures or failure. Additionally, special steel may be heat-treated or alloyed with other elements to further improve its impact resistance, making it an ideal choice for applications where high-velocity impacts are a concern.
Q:How does special steel perform at high temperatures?
Special steel is designed to maintain its strength and resistance to deformation even at high temperatures. It exhibits excellent heat resistance, high thermal conductivity, and retains its mechanical properties, making it ideal for applications that require stability and durability in extreme heat environments.
Q:What is the role of special steel in the manufacturing of precision instruments?
Special steel plays a crucial role in the manufacturing of precision instruments. Precision instruments, such as watches, surgical instruments, measuring tools, and aerospace components, require materials that possess exceptional qualities like durability, strength, corrosion resistance, and dimensional stability. Special steel, with its unique composition and properties, is specifically engineered to meet these demanding requirements. One of the key advantages of special steel is its high level of purity and uniformity. It undergoes extensive refining and purification processes to remove impurities, ensuring consistent and reliable performance. This purity is essential in precision instruments as it minimizes the risk of contamination, which could lead to inaccuracies or failures in their functioning. Another vital characteristic of special steel is its exceptional strength and hardness. Precision instruments often need to withstand high levels of stress, pressure, or mechanical forces without deforming or failing. Special steel, with its superior strength, provides the necessary structural integrity and stability to these instruments, allowing them to maintain their accuracy and reliability over time. Moreover, special steel exhibits excellent corrosion resistance, which is crucial for precision instruments that may come into contact with moisture, chemicals, or other corrosive substances. Corrosion can deteriorate the surface finish and compromise the functionality of the instruments. Special steel's resistance to corrosion ensures that the instruments can withstand harsh environments and continue to perform accurately. In addition to its physical properties, special steel is highly machinable and can be shaped into complex and intricate components with tight tolerances. Precision instruments often require intricate designs and intricate parts that demand high precision in their manufacturing process. Special steel's machinability allows for the production of these complex components with utmost precision, ensuring the overall accuracy and functionality of the instruments. In summary, the role of special steel in the manufacturing of precision instruments is vital. Its purity, strength, corrosion resistance, and machinability make it an ideal material for producing high-quality instruments that can deliver precise measurements, withstand demanding conditions, and maintain their accuracy over time. Without special steel, the production of precision instruments with such exceptional qualities would be significantly compromised.
Q:What are the different types of special steel coatings?
There are several different types of special steel coatings that are used to enhance the properties and performance of steel. Some of the most common types include: 1. Galvanized Coatings: This type of coating involves the application of a layer of zinc to the steel surface. Galvanized coatings provide excellent corrosion resistance, making them suitable for outdoor applications and structures exposed to harsh environments. 2. Epoxy Coatings: Epoxy coatings are known for their exceptional durability and chemical resistance. They are often used to protect steel from corrosion, abrasion, and chemical exposure. Epoxy coatings can be applied as single or multi-layer systems, enhancing the steel's lifespan and performance. 3. Powder Coatings: Powder coatings are a type of dry coating that is applied electrostatically and then cured under heat. They offer excellent protection against corrosion, impact, and UV damage. Powder coatings are available in a wide range of colors and finishes, making them a popular choice for aesthetic purposes as well. 4. Thermal Spray Coatings: These coatings involve the application of molten particles onto the steel surface using a thermal spray gun. The most common types of thermal spray coatings for steel are ceramic coatings, which provide enhanced wear resistance, thermal insulation, and corrosion protection. 5. PVD Coatings: Physical Vapor Deposition (PVD) coatings involve the deposition of thin layers of metallic or ceramic materials onto the steel surface through a vaporization process. PVD coatings provide improved hardness, wear resistance, and low friction properties to the steel. 6. Organic Coatings: Organic coatings, such as polyurethane or acrylic coatings, offer protection against corrosion, UV damage, and chemical exposure. These coatings are commonly used in architectural applications, automotive parts, and industrial equipment. 7. Chrome Plating: Chrome plating involves the deposition of a layer of chromium onto the steel surface. This coating provides excellent corrosion resistance, hardness, and a decorative finish. Chrome plating is often used in automotive applications and for decorative purposes. It is essential to select the appropriate type of special steel coating based on the specific requirements of the steel component or structure, including the level of corrosion resistance, durability, aesthetics, and environmental factors.
Q:What are the physical properties of special steel?
Compared to regular steel, special steel possesses unique physical properties. These properties can vary depending on the specific composition and processing techniques employed. However, special steel typically exhibits high strength, hardness, and durability. Its design often aims to withstand extreme conditions, including high temperatures, pressure, and corrosive environments. Additionally, special steel may display exceptional wear resistance, making it suitable for applications involving heavy machinery or cutting tools. Moreover, it can possess superior electrical and thermal conductivity, along with favorable magnetic properties. In conclusion, the physical properties of special steel render it highly versatile and valuable across various industries, such as automotive, aerospace, construction, and energy.
Q:How does special steel contribute to the agriculture industry?
The agriculture industry heavily relies on special steel to ensure durable and high-performance materials for agricultural machinery and equipment. These steels are specifically designed to withstand the harsh conditions and heavy workloads found in farming operations, resulting in increased efficiency and productivity. Special steel plays a crucial role in agriculture, particularly in the manufacturing of tillage equipment like plows, cultivators, and harrows. These implements require robust materials that can withstand the abrasion and impact of soil and rocks. Special steel provides the necessary strength and hardness to effectively break up the soil, improve soil quality, and prepare the land for planting. Moreover, special steel is extensively used in the production of machinery for planting, harvesting, and processing agricultural products. Combine harvesters, for example, heavily rely on special steel components for their cutting systems, threshing mechanisms, and grain handling systems. By utilizing special steel, these machines can efficiently handle the demanding tasks of crop collection, separation, and storage. Furthermore, special steel enhances the longevity and reliability of agricultural equipment. Agricultural machinery operates in challenging environments exposed to corrosive elements, moisture, and extreme temperatures. Special steel, often coated with protective layers, offers resistance against corrosion, rust, and wear, ultimately extending the lifespan of agricultural equipment. Additionally, the use of special steel in machinery manufacturing leads to improved precision and accuracy in agricultural operations. Precision agriculture, which involves using advanced technologies to optimize productivity, reduce waste, and conserve resources, increasingly relies on special steel components. These components enable more precise movements, better control, and increased accuracy in machinery, resulting in improved efficiency and waste reduction. In conclusion, special steel is essential to the agriculture industry as it provides the necessary strength, durability, and precision required for various agricultural machinery and equipment. By utilizing these high-quality materials, farmers can enhance productivity, reduce downtime, and achieve sustainable farming practices.
Q:How is special steel used in the aerospace sector?
Special steel is extensively used in the aerospace sector due to its unique properties that make it suitable for various applications. One of the primary uses of special steel in the aerospace industry is for manufacturing aircraft engine components. These components, such as turbine blades, shafts, and casings, are subjected to extremely high temperatures, pressures, and stresses. Special steel, with its excellent heat resistance, high strength, and superior mechanical properties, enables these engine parts to withstand such harsh conditions, ensuring optimal performance and safety. Moreover, special steel is also utilized in the construction of aircraft structures, including wings, fuselage, landing gears, and other critical components. These structures need to be lightweight, yet strong enough to withstand the forces experienced during flight. Special steel alloys, such as stainless steel, are used to achieve this balance by providing excellent strength-to-weight ratios and corrosion resistance. Additionally, special steel finds application in aerospace fasteners, such as bolts, nuts, and screws. These fasteners must have exceptional strength and durability to ensure the structural integrity of the aircraft. Special steel alloys, like titanium alloys, are commonly used in this regard due to their lightweight nature, high strength, and resistance to corrosion. Furthermore, special steel is utilized in the production of aerospace tooling and equipment. These tools, such as molds, dies, jigs, and fixtures, need to be robust, wear-resistant, and capable of withstanding high temperatures and pressures during manufacturing processes. Special steel, with its excellent hardness, toughness, and heat resistance, makes it ideal for such applications. In summary, special steel plays a critical role in the aerospace sector by providing the necessary properties required for aircraft engine components, structures, fasteners, and tooling. Its unique characteristics of high strength, heat resistance, lightweight, and corrosion resistance make it an indispensable material in the production of reliable and high-performance aerospace systems.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords