• Bs4449 500B Reinforcing Steel Rebar System 1
  • Bs4449 500B Reinforcing Steel Rebar System 2
  • Bs4449 500B Reinforcing Steel Rebar System 3
  • Bs4449 500B Reinforcing Steel Rebar System 4
  • Bs4449 500B Reinforcing Steel Rebar System 5
  • Bs4449 500B Reinforcing Steel Rebar System 6
Bs4449 500B Reinforcing Steel Rebar

Bs4449 500B Reinforcing Steel Rebar

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
140 m.t.
Supply Capability:
500000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Carbon Steel
Shape:
Steel Round Bar

Bs4449 500B Reinforcing Steel Rebar


Description of Bs4449 500B Reinforcing Steel Rebar

1, Diameter: 5.5mm-10mm Bs4449 500B Reinforcing Steel Rebar

                       10m- 40mm Bs4449 500B Reinforcing Steel Rebar

2, Length:  6m, 9m, 12m or customized

3, Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN

                    OEM technology - send detailed technical parameters for accurate quotation.

2, Produce Process: smelt iron - EAF smelt billet - ESR smelt billet - 

                                  hot rolled or forged to get the steel round bar and plate

3, Heat Treatment: annealing, normalizing, tempering, quenching

4, Surface Treatment: Black

5, Quality Assurance: We accept third party inspection for all orders. 

     You can ask testing organizations such as SGS, BV, etc. to test our products before shipping.

 

Chemical Composition of Bs4449 500B Reinforcing Steel Rebar

Grade

Technical data of the original chemical composition(%)

Reinforcing steel bar HRB335

C

Mn

Si

S

P

B

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 335

≥490

≥16

Reinforcing steel bar HRB400

C

Mn

Si

S

P

B

≤0.25

≤0.16

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 400

≥ 570

≥ 14


Products Show of Bs4449 500B Reinforcing Steel Rebar

Astm 615 Bs4449 B500B Deformed Steel Rebars



Company Information

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Astm 615 Bs4449 B500B Deformed Steel RebarsAstm 615 Bs4449 B500B Deformed Steel Rebars 


F A Q

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q:What is the purpose of cold drawing in special steel production?
The purpose of cold drawing in special steel production is to improve the mechanical properties and dimensional accuracy of the steel. Cold drawing involves pulling the steel through a die at room temperature, which reduces the cross-sectional area and increases the length of the steel. This process helps to refine the microstructure of the steel, resulting in improved strength, hardness, and toughness. Additionally, cold drawing can enhance the surface finish and straightness of the steel, ensuring precise dimensions and making it suitable for various applications where high-quality steel is required. Overall, cold drawing plays a crucial role in enhancing the performance and quality of special steel, making it more reliable and efficient in various industrial sectors.
Q:How does maraging steel achieve high strength through aging?
Maraging steel achieves high strength through aging by undergoing a process called precipitation hardening. This involves heating the steel to a specific temperature and holding it there for a certain period of time, followed by rapid cooling. This process allows the formation of fine, intermetallic particles within the steel's microstructure, which greatly enhances its strength. Additionally, the aging process helps relieve residual stresses and improves the steel's toughness and corrosion resistance.
Q:How does special steel contribute to the automotive suspension spring industry?
Enhanced performance and durability in the automotive suspension spring industry are provided by special steel, which plays a crucial role. These springs bear the weight of the vehicle and absorb road shocks, ensuring a smooth and comfortable ride for passengers. Also known as alloy steel, special steel is specifically designed to possess exceptional mechanical properties. These include high strength, toughness, and resistance to wear and fatigue. Such properties are vital for suspension springs, as they must endure the constant stresses and strains of vehicle operation. The utilization of special steel in automotive suspension springs allows for the production of lighter yet stronger and more reliable springs compared to traditional steel ones. Consequently, this leads to improved fuel efficiency, reduced vehicle weight, lower emissions, and a more sustainable automotive industry. Moreover, special steel enables suspension springs to maintain their shape and performance over extended periods, even under extreme conditions. This ensures that the vehicle's suspension system remains effective, providing a stable and comfortable driving experience. Additionally, special steel can be customized to meet the specific requirements of different vehicles. This allows for the tailoring of suspension springs based on factors such as vehicle weight, load capacity, and desired ride quality. The flexibility in material properties enhances the overall performance and safety of the suspension system. In summary, special steel is essential in the automotive suspension spring industry as it provides the necessary strength, durability, and performance characteristics for a reliable and efficient suspension system. Its use contributes to the development of lighter, more fuel-efficient vehicles while ensuring passenger comfort and safety.
Q:What are the different methods for improving the magnetic properties of special steel?
Improving the magnetic properties of special steel can be achieved through various methods. One effective approach is heat treatment, which involves subjecting the steel to specific heating and cooling processes. This alters the atomic structure of the steel, enhancing its magnetic properties. For example, annealing the steel at high temperatures and slowly cooling it can create a fine-grained microstructure, resulting in improved magnetic performance. Another method is alloying, where certain elements like nickel, cobalt, or aluminum are added to the steel. Even small amounts of these alloying elements can significantly enhance the steel's magnetic characteristics, increasing its saturation magnetization and improving coercivity. Cold working, also known as cold deformation, is another technique that can improve the steel's magnetic properties. By subjecting the steel to mechanical stress at low temperatures, dislocations and defects are formed within its crystal structure, leading to improved magnetization, permeability, and reduced hysteresis losses. Grain orientation is yet another method to improve the magnetic properties of special steel. This involves aligning the grains of the steel in a specific direction through processes like hot rolling or magnetic annealing. This alignment results in anisotropic magnetic properties, meaning the steel will exhibit different magnetic characteristics depending on the direction of the applied magnetic field. Surface treatments can also be utilized to enhance the magnetic properties of special steel. Coatings such as electroplating, electroless plating, or chemical vapor deposition can modify the steel's surface, improving its magnetic performance. These treatments reduce eddy current losses, enhance corrosion resistance, and increase magnetic permeability. It is important to consider specific requirements and desired characteristics when choosing a method to improve the magnetic properties of special steel. Each method has its own advantages and limitations, and factors like cost, feasibility, and desired magnetic performance should be taken into account.
Q:How is shock-resistant alloy steel used in the production of impact-resistant parts?
Shock-resistant alloy steel is used in the production of impact-resistant parts to enhance their durability and toughness. This type of steel is specifically designed to withstand high impact forces, making it ideal for applications where parts are subjected to intense shock or sudden impact loads. By incorporating shock-resistant alloy steel into the manufacturing process, impact-resistant parts can better absorb and distribute the energy from impacts, thereby reducing the risk of damage or failure.
Q:What are the different methods of heat treatment for special steel?
Special steel can undergo various heat treatment methods, each designed to enhance specific properties. These methods are as follows: 1. Annealing: By heating the steel to a specific temperature and gradually cooling it, typically in a controlled atmosphere, annealing helps relieve internal stresses, improve machinability, and soften the steel for further processing. 2. Normalizing: This process involves heating the steel above its critical temperature and then air cooling it in still air. Normalizing refines the grain structure, improves mechanical properties, and enhances strength and toughness. 3. Quenching: By rapidly cooling the steel from a high temperature using quenching mediums like oil, water, or brine, quenching creates a hard and brittle structure called martensite. This increases the steel's hardness and wear resistance. 4. Tempering: After quenching, the steel is reheated to a specific temperature and held there for a certain period, followed by air cooling. Tempering reduces the brittleness caused by quenching, improving toughness, ductility, and impact resistance. 5. Austempering: This method involves quenching the steel from a high temperature and then holding it at a specific temperature for an extended period. Austempering produces a structure called bainite, which offers a combination of strength, toughness, and ductility. 6. Martempering: A variation of quenching, martempering involves cooling the steel just above its martensitic transformation range and holding it at that temperature until uniformly cooled. This method reduces the risk of distortion and cracking, providing improved toughness and dimensional stability. 7. Induction hardening: Specifically used to selectively harden certain areas of the steel's surface, induction hardening involves heating the surface using induction heating and rapidly quenching it. This process creates a hardened surface layer while maintaining core toughness and ductility. These diverse heat treatment methods for special steel offer a range of options to optimize desired properties depending on specific applications and requirements.
Q:What are the different methods for surface hardening special steel?
There are several methods for surface hardening special steel, including carburizing, nitriding, induction hardening, flame hardening, and laser hardening. Carburizing involves introducing carbon into the surface of the steel through heating in a carbon-rich environment. Nitriding involves diffusing nitrogen into the surface of the steel to create a hard nitride layer. Induction hardening uses electromagnetic induction to heat the surface of the steel and then rapidly quench it to increase hardness. Flame hardening involves heating the surface of the steel with a flame and then quenching it to harden the surface. Laser hardening uses a high-intensity laser beam to heat the surface of the steel and then quench it, resulting in a hardened surface.
Q:How does special steel perform in abrasive wear applications?
Special steel is known for its excellent performance in abrasive wear applications. It is specifically designed to withstand the harsh conditions and high levels of abrasion that occur in various industrial processes. One of the key features of special steel is its exceptional hardness. It is able to resist the abrasive forces exerted by different materials, such as rocks, sand, or minerals, without experiencing significant wear or deterioration. This hardness is achieved through a combination of alloying elements and heat treatment processes, which enhance the steel's ability to retain its structural integrity even under extreme wear conditions. Additionally, special steel often possesses a high level of toughness, which allows it to absorb impact and resist fracture or chipping. This property is particularly important in abrasive wear applications, where materials constantly collide and generate high levels of stress. The toughness of special steel enables it to withstand these impacts and maintain its performance over a long period of time. Furthermore, special steel can exhibit excellent resistance to corrosion, which is crucial in abrasive wear applications that involve exposure to moisture, chemicals, or other corrosive agents. This resistance ensures that the steel does not deteriorate or lose its effectiveness due to chemical reactions or oxidation, extending its lifespan and reducing maintenance requirements. In summary, special steel performs exceptionally well in abrasive wear applications due to its hardness, toughness, and corrosion resistance. These properties enable it to withstand the harsh conditions and high levels of abrasion encountered in various industrial processes, ensuring long-lasting performance and reduced downtime.
Q:What are the different surface coatings available for special steel?
There are several different surface coatings available for special steel, such as galvanizing, electroplating, powder coating, and organic coatings. Each coating offers unique benefits and characteristics, ranging from enhanced corrosion resistance to improved aesthetic appearance and durability. The choice of coating depends on the specific requirements of the application and the desired outcome for the steel product.
Q:How does special steel contribute to the aviation industry?
Special steel plays a crucial role in the aviation industry by contributing to the safety, performance, and efficiency of aircraft. Firstly, special steel is used in the manufacturing of critical components of aircraft, including landing gears, engine parts, and structural elements. These components require materials with exceptional strength, durability, and resistance to fatigue and corrosion. Special steel, such as stainless steel or nickel-based alloys, offers these properties, ensuring the structural integrity and safety of the aircraft. Secondly, special steel enables the development of lightweight aircraft, which is a key requirement in the aviation industry. By utilizing high-strength alloys, manufacturers can reduce the weight of aircraft components without compromising their structural integrity. This results in fuel savings, extended range, and increased payload capacity, ultimately enhancing the efficiency of aircraft operations. Furthermore, special steel is crucial in enhancing the performance and reliability of aircraft engines. Steel alloys with high-temperature resistance and excellent mechanical properties are used in the production of turbine blades, combustion chambers, and exhaust systems. These components withstand extreme temperatures and stress levels, allowing engines to operate efficiently and reliably. Moreover, special steel contributes to the aviation industry by enabling innovative designs and technologies. With continuous advancements in material science, manufacturers are able to develop new steel alloys with improved properties, such as enhanced resistance to wear, thermal stability, or fatigue resistance. These innovations unlock new possibilities for aircraft design, performance, and fuel efficiency. In conclusion, special steel plays a vital role in the aviation industry by ensuring the safety, performance, and efficiency of aircraft. Its use in critical components, lightweight construction, engine manufacturing, and technological advancements contributes to the advancement of aviation, making air travel safer, more efficient, and more sustainable.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords