• Alloy Steel 8mm SAE 1010 Coils Steel Wire Rod System 1
  • Alloy Steel 8mm SAE 1010 Coils Steel Wire Rod System 2
  • Alloy Steel 8mm SAE 1010 Coils Steel Wire Rod System 3
Alloy Steel 8mm SAE 1010 Coils Steel Wire Rod

Alloy Steel 8mm SAE 1010 Coils Steel Wire Rod

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Carbon Steel
Shape:
Steel Coil
Technique:
Hot Rolled
Surface Treatment:
Dry
Certification:
ISO,SGS,UL,IBR,RoHS,CE,API,BSI,BV

Product information:

Secifications

8mm SAE 1010b Coils Steel Wire Rod

other name: 5.5mm-12mm wire rod in coil


1.Grade: SAE 1006B,SAE 1008B,AISI 1050, AISI 1070 
2.Diameter: 5.5mm-12mm

sae 1008 steel wire rod      

 

Product 

sae 1008 low carbon steel wire rod price steel wire rod carbon steel wire rod 

Standard

AISI, SAE,ASTM, BS, DIN, GB, JIS

Steel grade

Q195,Q235,SAE1006B, SAE1008B, SAE1010B, SAE1018B, AISI 1010, AISI 1020, AISI 1050, AISI 1070 or according to customers requirements

Material

Mild steel, iron, carbon, steel, ms

Wire Gauge

5.5mm,6.5mm,8mm,10mm,12mm-18mm,

Technique

Hot rolled, Cold Drawn

Coil weight

1.8-2.1mts

MOQ

10MT

Delivery Time

15-30 days after receipt of L/C or deposit by T/T

Packing

In coil and load in container, if large quantity, by bulk vessel; Can be packed as customers' special requirements

Payment terms

1).100% irrevocable L/C at sight.
2).30% T/T prepaid and the balance against the copy of B/L.
3).30% T/T prepaid and the balance against L/C

Application

widely used in machinery parts, manufacturing industry, electronics industry, metal tools and others

Product Show:

Alloy Steel 8mm SAE 1010 Coils Steel Wire Rod


Workshop Show:

Alloy Steel 8mm SAE 1010 Coils Steel Wire Rod

Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

 

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                           2)as customer's requirement


Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 


Q:What are the different heat treatment methods for special steel?
There are several heat treatment methods for special steel, including annealing, normalizing, quenching, tempering, and case hardening. Annealing involves heating the steel and then slowly cooling it to relieve internal stresses and improve its ductility. Normalizing is a similar process but involves cooling the steel in still air to achieve a more uniform structure. Quenching is a rapid cooling process that results in a hardened steel with increased strength and hardness. Tempering involves reheating the hardened steel to a specific temperature to reduce its brittleness and improve toughness. Finally, case hardening is a process where only the surface of the steel is hardened, while the core remains relatively soft, resulting in a tough and wear-resistant material.
Q:What is the impact of titanium in special steel alloys?
Special steel alloys greatly benefit from the inclusion of titanium, a remarkably versatile and valuable element. The addition of titanium to these alloys has a profound effect on their properties and performance. One of titanium's major impacts on special steel alloys is the enhancement of strength and durability. Titanium possesses a remarkable strength-to-weight ratio, meaning that even a small amount of titanium can significantly increase the strength of the steel alloy. This quality proves particularly advantageous in industries such as aerospace or automotive, where high strength and resistance to deformation or fatigue are essential. Moreover, titanium also contributes to the corrosion resistance of steel alloys. It forms a protective oxide layer on the steel's surface, effectively preventing or minimizing the detrimental effects of corrosion caused by exposure to various environmental factors like moisture, chemicals, or saltwater. This corrosion resistance becomes especially crucial in industries where steel is subjected to harsh conditions, such as marine or offshore applications. Another noteworthy impact of titanium in special steel alloys is its ability to enhance heat resistance. Titanium boasts a high melting point and exceptional thermal stability, making steel alloys containing titanium suitable for high-temperature applications. This characteristic holds particular significance in industries like power generation, where steel components must withstand extreme temperatures without compromising their structural integrity. Furthermore, titanium greatly improves the weldability of steel alloys. Acting as a deoxidizer, it reduces the presence of impurities and enhances the quality of welds. This attribute proves highly advantageous in manufacturing processes involving welding, as it guarantees strong and reliable joints. In summary, the influence of titanium on special steel alloys is multifaceted and highly advantageous. It bolsters the strength, durability, and corrosion resistance of steel, while simultaneously improving its heat resistance and weldability. These properties render titanium an invaluable element in the production of high-performance steel alloys for a wide array of industries.
Q:How does special steel perform in cryogenic impact resistance?
Special steel performs well in cryogenic impact resistance due to its high strength, toughness, and ability to retain these properties at extremely low temperatures. This makes it suitable for applications requiring exceptional resistance to fracture and deformation under cryogenic conditions.
Q:What are the different power generation grades of special steel?
Within the power generation industry, there are numerous grades of special steel used for different applications. These grades are specifically engineered to withstand the extreme conditions encountered in power plants, including high temperatures, pressures, and corrosive environments. One widely used grade is 9Cr-1Mo-V steel, also referred to as Grade 91. This high-strength, low-alloy steel is commonly employed in the construction of boiler components such as headers, tubes, and turbine rotors. Grade 91 steel offers exceptional creep strength, oxidation resistance, and thermal stability, making it well-suited for operations at elevated temperatures. Another commonly utilized grade in power generation is 12Cr-1Mo-V steel, also known as Grade 11. It finds primary application in the fabrication of superheater and reheater tubes for power boilers. Grade 11 steel exhibits good strength at high temperatures, corrosion resistance, and weldability, which makes it an ideal choice for these specific purposes. Furthermore, the power generation industry often employs a grade called 2.25Cr-1Mo steel, or Grade 22, in the construction of pressure vessels and piping systems within power plants. This grade is highly regarded for its outstanding resistance to creep, high-temperature strength, and ability to withstand hydrogen attack. It is therefore deemed suitable for critical components within power generation facilities. Moreover, there exist other specialized grades such as 5Cr-0.5Mo steel, or Grade 5, and 9Cr-0.5Mo steel, or Grade 9, which find application in specific power generation scenarios involving elevated temperatures and pressures. These grades offer a combination of strength, corrosion resistance, and thermal stability, ensuring dependable performance in demanding environments. In conclusion, the power generation industry relies on a variety of special steel grades that are specifically tailored to meet the unique requirements of power plants. These grades possess crucial properties such as high-temperature strength, corrosion resistance, and more, which are essential for efficient and reliable power generation operations.
Q:What are the different heat treatment grades of special steel?
There are several heat treatment grades of special steel, including annealed, normalized, quenched and tempered, and hardened and tempered.
Q:What is the difference between special steel and regular steel?
Special steel refers to a specific type of steel that has been enhanced with additional alloying elements or has undergone specialized treatments to enhance its strength, durability, or other desired properties. Regular steel, on the other hand, refers to common or standard steel that does not possess these additional features or improvements. The key difference lies in the composition and processing, as special steel is engineered to meet specific requirements for particular applications, such as high-temperature resistance, corrosion resistance, or increased hardness.
Q:How does special steel contribute to improving product sustainability?
Special steel contributes to improving product sustainability in several ways. Firstly, it offers enhanced durability and strength, which means that products made from special steel have a longer lifespan and reduced need for frequent replacements. This reduces the overall impact on the environment by minimizing waste generation and conserving resources. Secondly, special steel often has high corrosion resistance, making it suitable for use in various industries, including construction, automotive, and aerospace. This resistance to corrosion ensures that products made from special steel require less maintenance and repairs over time, reducing the consumption of energy, materials, and resources. Additionally, special steel can be recycled and reused efficiently. This recyclability reduces the demand for new raw materials, decreases energy consumption, and minimizes greenhouse gas emissions associated with the production of steel from virgin materials. By using recycled special steel, companies can contribute to a circular economy and reduce their environmental footprint. Overall, the utilization of special steel in various products contributes to their longevity, reduced maintenance needs, and recyclability, all of which are essential for improving product sustainability and minimizing environmental impact.
Q:How does special steel contribute to the construction industry?
Special steel contributes to the construction industry in various ways. Firstly, its high strength and durability make it an ideal material for structural components, such as beams and columns, ensuring the integrity and safety of buildings. Secondly, special steel's resistance to corrosion and extreme weather conditions enhances the longevity of structures, reducing maintenance and replacement costs. Additionally, its versatility allows for innovative designs and efficient construction methods, enabling architects and engineers to push the boundaries of construction possibilities. Overall, special steel plays a crucial role in enhancing the quality, performance, and sustainability of construction projects.
Q:What are the different methods for case hardening special steel?
Case hardening special steel can be achieved through various methods, each with its own set of advantages and applications. 1. Carburizing: By subjecting the steel to high temperatures within a carbon-rich environment, a durable and resistant outer layer is formed as carbon atoms diffuse into the surface. Gas carburizing, pack carburizing, or liquid carburizing are some techniques employed for this process. 2. Nitriding: Steels with high alloy content benefit from nitriding, wherein the steel is heated in an environment abundant in nitrogen. This leads to the formation of a tough and corrosion-resistant layer as nitrogen atoms penetrate the surface. 3. Induction hardening: Through induction heating, the surface of the steel is selectively heated, followed by a rapid quenching process. This results in a hardened layer suitable for localized hardening requirements, such as gears or shafts. 4. Flame hardening: Large parts or components that are challenging to treat with other methods can be effectively hardened through the application of a high-temperature flame to the steel surface, followed by rapid cooling. 5. Laser hardening: Achieving precision and localized hardening, laser hardening involves the use of a laser beam to heat and harden specific areas of the steel. This method allows for precise control over the depth and hardness of the hardened layer. The selection of a case hardening method depends on various factors, including the desired hardness, the size and shape of the part, and the specific requirements of the application. Each method possesses its own advantages and limitations.
Q:What are the different methods of surface electropolishing for special steel?
There are several different methods of surface electropolishing for special steel, each with its own unique advantages and applications. 1. Immersion Electropolishing: This method involves immersing the special steel components in an electrolyte bath and passing a direct current through the solution. The current causes the surface of the steel to dissolve, resulting in a smooth and polished finish. Immersion electropolishing is commonly used for large and complex parts, as it can provide uniform surface improvement on all exposed areas. 2. Electrolytic Electropolishing: This technique involves applying a direct current directly to the surface of the special steel component using an electrode. The current causes the surface to dissolve, resulting in a smooth and reflective finish. Electrolytic electropolishing is often preferred for smaller or intricate parts, as it allows for precise control over the process and can target specific areas that require improvement. 3. Reverse Pulse Electropolishing: This method utilizes a combination of direct and reverse current pulses to achieve a superior surface finish. The reverse current pulses help to reduce the surface roughness and eliminate any embedded particles or contaminants. Reverse pulse electropolishing is particularly useful for special steel components that require enhanced corrosion resistance and improved cleanliness. 4. Magnetic Field-Assisted Electropolishing: This technique involves applying a magnetic field to the electropolishing process, which can improve the polishing rate and surface finish. The magnetic field aligns the electrical current and enhances the removal of material, resulting in a smoother and more uniform surface. Magnetic field-assisted electropolishing is often used for special steels that are difficult to polish or have complex geometries. 5. Flow-Assisted Electropolishing: This method involves using a flowing electrolyte solution to enhance the electropolishing process. The flowing solution helps to remove dissolved material from the surface and prevents the formation of gas bubbles, resulting in a smoother and more efficient polishing. Flow-assisted electropolishing is commonly used for large or flat special steel components that require a high-quality surface finish. Overall, the selection of the appropriate method of surface electropolishing for special steel depends on the specific requirements of the components, such as size, geometry, and desired surface finish. Each method offers its own benefits and considerations, and consulting with an experienced electropolishing specialist is recommended to determine the most suitable approach.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords