• 1020 Carbon Seamless Steel Pipe  A179 CNBM System 1
  • 1020 Carbon Seamless Steel Pipe  A179 CNBM System 2
  • 1020 Carbon Seamless Steel Pipe  A179 CNBM System 3
1020 Carbon Seamless Steel Pipe  A179 CNBM

1020 Carbon Seamless Steel Pipe A179 CNBM

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 pc
Supply Capability:
30 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details

Thickness:

1 - 40 mm

Section Shape:

Round

Outer Diameter:

21.3 - 609.6 mm



Secondary Or Not:

Non-secondary

Application:

Fluid Pipe

Technique:

Hot Rolled

Certification:

BV

Surface Treatment:

Other

Special Pipe:

Thick Wall Pipe

Alloy Or Not:

Non-alloy

Standard:

API 5L,API

Packaging & Delivery

Packaging Detail:Standard seaworthy export packing with steel strip or with plastic clothe, or as requests from the coustomer.
Delivery Detail:7-25 days after receiveved the deposit

Specifications

Seamless Steel Pipe
Standard:API ASTM DIN
Size:OD:21.3mm-609.6mm
WT:1mm-40mm

Mechanical properties

standard

 grade

Tensile strength(MPA)

yield strength(MPA)

ASTM A106

A

≥330

≥205

B

≥415

≥240

C

≥485

≥275

 

 

Chemical ingredients

standard

grade

Chemical ingredients

C

Si

Mn

P

S

Cr

Mo

Cu

Ni

V

ASTM A106

A

≤0.25

≥0.10

0.27~0.93

≤0.035

≤0.035

≤0.40

≤0.15

≤0.40

≤0.40

≤0.08

B

≤0.30

≥0.10

0.29~1.06

≤0.035

≤0.035

≤0.40

≤0.15

≤0.40

≤0.40

≤0.08

C

≤0.35

≥0.10

0.29~1.06

≤0.35

≤0.35

≤0.40

≤0.15

≤0.40

≤0.40

≤0.08

Company Name Tianjin Xinlianxin
Business TypeManufacturer and Exporter
Productsteel pipe
Main Products and Standards
product nameSpecification Rangesteel GradeExecutive Standard
Structure Pipe20mm-820mm 1/2"-32"10,20,35,45,16Mn,A53ABGB/T8162-1999,ASTM A53-98,ASTM500-98,ASTM 500-98,JISG3441-1998,JISG3444-1994
Pipe for Liquid Transportation20mm-820mm 1/2"-33"10,20,Q345(16Mn),A53AB,A192,SGPGB/T8163-1999,ASTM A53-98,ASTM A192,JISG3452-1997
Boiler Pipe20mm-820mm 1/2"-35"20,20G,A179,A106B,A192,ST37.0,ST44.0,ST35.8,ST45.8,Gr320GB3087-1999,GB5310-1995,ASTM A106,ASTM A179,ASTM A192,DIN-1629-1984,DIN17175,BS3059.1-1987

 

1Productseamless steel pipe
2StandardU.S.A.

ASTM A53/A106/A178/A179/A192/A210/A213/

A333/A335/A283/A135/A214/A315/A500/A501/A519/A161/A334

API 5L/5CT

JapanJIS G3452/G3454/G3456/G3457/G3458/G3460/3461/3462/3464
GermanDIN 1626/17175/1629-4/2448/2391/17200  SEW680
BritainBS 1387/1600/1717/1640/3601/3602/3059/1775
RussiaGOST 8732/8731/3183
ChinaGB/T8162/T8163 GB5310/6579/9948
3

Material

Grade

U.S.A.Gr. B/Gr.A/A179/A192/A-1/T11/T12/T22/P1/FP1/T5/4140/4130
JapanSTPG38,STB30,STS38,STB33,STB42,STS49,
STBA23,STPA25,STPA23,STBA20
GermanST33,ST37,ST35,ST35.8,ST45,ST52,15Mo3,
13CrMo44, 1.0309, 1.0305, 1.0405
BritainLow, Medium, high 
Russia10, 20, 35, 45, 20X
China10#, 20#, 16Mn, 20G, 15MoG, 15CrMo, 30CrMo,
42Crmo, 27SiMn, 20CrMo
4Out Diameter21.3mm-609.6mm
5Wall Thickness2.31mm-40mm
6LengthAs per customers' requirements
7ProtectionPlastic caps/ Wooden case
8SurfaceBlack painting/varnished surface,anti-corrosion oil,
galvanized or as per required by customer


Q:Who knows what is the difference between double submerged arc welded pipe and longitudinal submerged arc welding?
The straight seam welding is relative to the spiral welding and the T-shaped welding, and so on.
Q:How do you calculate the pipe volume for steel pipes?
To calculate the volume of a steel pipe, you need to know its length and the inner diameter of the pipe. The formula to calculate the volume of a cylindrical shape, like a pipe, is V = πr^2h, where V is the volume, π is a mathematical constant approximately equal to 3.14159, r is the radius of the pipe (which is half of the inner diameter), and h is the length of the pipe. Firstly, measure the inner diameter of the pipe using a measuring tape or a caliper. Divide this value by 2 to obtain the radius. Next, measure the length of the pipe in either inches, feet, or meters. Ensure that you use the same unit of measurement for both the radius and length. Once you have the radius and length, plug them into the formula V = πr^2h. For example, let's say the inner diameter of the steel pipe is 10 inches and the length is 50 feet. First, divide the inner diameter by 2 to find the radius: 10 / 2 = 5 inches. Next, convert the length to inches: 50 feet * 12 inches/foot = 600 inches. Now, plug the values into the formula: V = 3.14159 * 5^2 * 600. Calculating the volume: V = 3.14159 * 25 * 600 = 47,123.85 cubic inches. Therefore, the volume of the steel pipe is approximately 47,123.85 cubic inches.
Q:Are steel pipes resistant to chemicals?
Yes, steel pipes are generally resistant to chemicals. However, their resistance may vary depending on the specific type of chemical and the grade of steel used. Some chemicals may cause corrosion or degradation of the steel over time, so it is important to consider the compatibility of the pipe material with the intended chemicals before use.
Q:How do you clean and maintain steel pipes?
To clean and maintain steel pipes, start by removing any dirt, debris, or rust using a wire brush or sandpaper. Then, wash the pipes with a mild detergent and warm water solution, using a cloth or sponge to scrub away any remaining grime. Rinse thoroughly with clean water and dry the pipes completely to prevent moisture-related issues. To maintain steel pipes, regularly inspect them for signs of corrosion or damage, and apply a protective coating or paint if necessary. Additionally, ensure proper drainage, avoid exposure to harsh chemicals, and promptly address any leaks or repairs needed to extend the lifespan of the pipes.
Q:How are steel pipes insulated for thermal efficiency?
Steel pipes are insulated for thermal efficiency by applying a layer of insulating material, such as mineral wool or foam, around the pipe. This insulation helps to reduce heat transfer and prevent energy loss, ensuring that the pipes maintain the desired temperature and improve overall thermal efficiency.
Q:What are the different grades of steel used in manufacturing pipes?
There are several grades of steel used in manufacturing pipes, including carbon steel, alloy steel, stainless steel, and duplex steel. Each grade has distinct properties and characteristics that make it suitable for different applications and environments.
Q:How do you connect steel pipes together?
Various industries commonly employ several methods to connect steel pipes together. One frequently utilized technique is welding, which involves the heating of the steel pipe ends and their subsequent joining using a welding rod or wire. This method results in a robust and enduring connection that can withstand high pressures and temperatures. Threading, another method, entails cutting threads into the ends of the steel pipes. These threaded ends can then be screwed together using pipe fittings such as couplings or unions. Threading is particularly advantageous for smaller diameter pipes as it allows for easy disassembly and reassembly. Flanges also serve as a means to connect steel pipes. These flat, circular discs with holes can be bolted together, providing a secure connection. Flanges are especially suitable for large diameter pipes or those that require frequent disconnection for maintenance or repairs. Pipe fittings, such as couplings, tees, elbows, or reducers, can also be employed for connecting steel pipes. These fittings, typically composed of steel or other materials, are designed for welding, threading, or utilizing other connection methods like grooving or compression. It is important to consider various factors, such as pipe size, application, required strength, and adherence to industry standards or codes, when selecting the appropriate method for joining steel pipes. Consulting with a qualified professional or referring to industry-specific guidelines is essential in making this decision.
Q:How do steel pipes handle water hammer?
Steel pipes handle water hammer by absorbing and dissipating the energy caused by sudden changes in water flow or pressure. The strong and rigid nature of steel pipes allows them to withstand the impact of water hammer without deforming or breaking. Additionally, the smooth interior surface of steel pipes minimizes turbulence and reduces the likelihood of water hammer occurring.
Q:What is the maximum temperature that steel pipes can handle?
The maximum temperature that steel pipes can handle varies depending on the specific grade and type of steel used. However, in general, steel pipes can withstand high temperatures ranging from 750 to 1200 degrees Celsius (1382 to 2192 degrees Fahrenheit).
Q:What is the impact of temperature on steel pipes?
The impact of temperature on steel pipes is significant and can have both positive and negative effects. At high temperatures, steel pipes can experience thermal expansion, causing them to expand and potentially leading to distortion or buckling. This expansion can also affect the joints and connections, potentially causing leaks or failures. Therefore, it is crucial to consider the coefficient of thermal expansion when designing and installing steel pipes in high-temperature environments. On the other hand, steel pipes typically have excellent thermal conductivity, allowing them to withstand high temperatures without significant degradation. This makes them suitable for applications where heat transfer is a primary concern, such as in industrial processes or heating systems. Extreme cold temperatures can have detrimental effects on steel pipes as well. In freezing conditions, water or other fluids inside the pipes can expand and lead to cracks or bursts. This can cause leaks, loss of fluid, and potential damage to surrounding structures. Therefore, appropriate insulation and preventive measures need to be taken to ensure the integrity of steel pipes in cold environments. Additionally, temperature variations can also affect the mechanical properties of steel, such as its tensile strength and toughness. For instance, exposure to elevated temperatures over an extended period can lead to a phenomenon known as thermal degradation, where the steel's strength decreases, making it more prone to deformation or failure. In conclusion, the impact of temperature on steel pipes is significant and can influence their structural integrity, thermal performance, and mechanical properties. Proper design, insulation, and maintenance are essential to ensure the safe and efficient operation of steel pipes in various temperature conditions.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords