• Stainless Bearing Steel Round Bar System 1
  • Stainless Bearing Steel Round Bar System 2
  • Stainless Bearing Steel Round Bar System 3
  • Stainless Bearing Steel Round Bar System 4
  • Stainless Bearing Steel Round Bar System 5
Stainless Bearing Steel Round Bar

Stainless Bearing Steel Round Bar

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
50 m.t.
Supply Capability:
1000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Product Description:

OKorder is offering Stainless Bearing Steel Round at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Stainless Bearing Steel Round are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Stainless Bearing Steel Round are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Specifications of Bearing Steel Round Bar

Grade

AISI 52100, ASTM E52100, DIN 1.3505,JIS SUJ2, GCr15

Dimensions

Diameter: 30-60mm

Length: 2000-13000mm or as required

Shape

Round Bar

Type

Alloy Steel Bar

Delivery Condition

Black Surface

Material

Bearing Steel

Technique

Hot Rolled

Usage and Applications of Bearing Steel Round Bar

Bearing steels are used for ball and roller bearing applications and are comprised of low carbon steels and high carbon through harden able steel.

 First the famous 1C-1.5Cr steel from which the majority of bearings are made. Its structure is apparently well-understood and the focus is on purity in order to avoid inclusions which initiate fatigue during rolling contact. Then there is the M50 steel and its variants, from which bearings which serve at slightly higher temperatures in aeroengines are manufactured, based on secondary-hardened martensite.

 Tapered roller bearing are generally used to support combined load mainly consisting of radial load. Their cups are separable for easy assembling ,During mounting and using, radial clearance and axial clearance can be adjusted and preloaded mounting can be made.

Packaging & Delivery of Bearing Steel Round Bar

Packaging Detail: ASTM 52100 Steel in seaworthy packing or on customer request; Packed in bundles with standard export sea-worthy package or as customer require

Delivery Detail: 45 days after confirmed

Trade terms: FOB, CFR, CIF ou as customer's required

MOQ: 25 tons or at customer's demands. If the quantity is good, the price will be better.

Processing of Bearing Steel Round Bar

The processing of Bearing Steel Round Bar is hot rolled (strictly control sulphur, phosphorus and non-metallic inclusions content and distribution)

Chemical Composition of Bearing Steel Round Bar

C

Si

Mn

Cr

Ni

Cu

Equal or less than

0.95-1.05

0.15-0.35

0.25-0.45

Cr:1.40-1.65

0.30

0.25

All products' chemical composition and specification can be design according to customers' requirement.

 

Note of Bearing Steel Round Bar

1. According to national standard (GB) for our products, if not, supply according to national standards (GB) or agreement.

2. We can not only provide electric furnace +LF+VD and electros lag re-melting (ESR) steel forging materials, but also forging products of piece, bar, etc.

3. Our company is equipped with roll equipment and can provide our customers with roll billets or finished.

4. Please send us your detailed specifications when inquire. We will reply to you ASAP.

5. Certificate of quality is issued in English, in addition the normal terms, production process, the mechanical property (yield strength, tensile strength, elongation and hardness. forged ratio, UT test result, Grain size, heat treatment methods and the sample of is shown on the certificate of quality.

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

 

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q5: Can stainless steel rust?

A5: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.

 

Stainless Bearing Steel Round Bar

 

Q:How does special steel contribute to the oil and gas aftermarket industry?
Due to its unique properties and capabilities, special steel plays a vital role in the oil and gas aftermarket industry. Its resistance to corrosion makes it well-suited for use in the harsh and corrosive environments commonly found in this sector. By preventing corrosion, special steel extends the lifespan of equipment and components, reducing the need for frequent replacements and maintenance. Additionally, special steel offers high strength and durability, enabling it to withstand the extreme pressures and temperatures encountered in oil and gas operations. This strength ensures that equipment and components made from special steel can function reliably and efficiently, even under demanding conditions. Moreover, special steel can be customized to meet the specific requirements of the oil and gas industry. With its various grades and compositions, special steel can possess specific properties, such as resistance to sulfide stress cracking, hydrogen embrittlement, and high-temperature oxidation. These tailored properties make special steel suitable for critical applications, including wellheads, pipelines, valves, and other equipment used in the oil and gas aftermarket industry. Furthermore, special steel allows for the production of complex and intricate components that are essential for the oil and gas sector. Its excellent machinability and weldability enable the creation of precision-engineered parts, ensuring the efficient and reliable operation of oil and gas equipment. In conclusion, special steel plays a significant role in the oil and gas aftermarket industry by providing corrosion resistance, high strength, durability, customization options, and the ability to manufacture intricate components. These properties make special steel indispensable in ensuring the safety, reliability, and efficiency of operations in the oil and gas sector.
Q:What are the properties of shock-resistant steel?
Shock-resistant steel, also known as impact-resistant steel, possesses several key properties that make it highly resistant to sudden impacts or shock loads. These properties include high toughness, excellent strength, and superior ductility. Shock-resistant steel is designed to absorb and distribute the energy generated from an impact, thereby preventing fractures or failure. It can withstand sudden forces without deforming or breaking, making it ideal for applications in industries such as construction, automotive, and aerospace, where impact resistance is crucial.
Q:What are the common techniques for testing the quality of special steel?
Several techniques are commonly used to test the quality of special steel, ensuring that it meets the necessary specifications and standards for its intended use. Among the most prevalent methods are: 1. Chemical Analysis: This technique involves analyzing the steel's composition to determine the concentration of different elements present. By conducting chemical analysis, it is possible to ensure that the steel contains the necessary elements in the desired quantities and to identify any impurities that might impact its quality. 2. Tensile Testing: Tensile testing is utilized to measure the strength and elasticity of steel. It entails subjecting a sample of the steel to an increasing load until it breaks. This helps establish the maximum stress the steel can endure before failure, providing valuable insights into its mechanical properties. 3. Hardness Testing: The purpose of hardness testing is to assess a steel's resistance to indentation or penetration. It aids in evaluating the steel's strength and its ability to withstand wear and deformation. Common hardness testing methods include the Brinell, Rockwell, and Vickers tests. 4. Microstructure Examination: Through microstructure examination, the internal structure of the steel is analyzed under a microscope. This technique helps identify the presence of defects such as inclusions, voids, or improper grain structure. Additionally, it provides information about the steel's overall quality and its heat treatment. 5. Non-Destructive Testing (NDT): NDT techniques are widely employed to test the quality of special steel without causing damage to the material. Ultrasonic testing, magnetic particle testing, liquid penetrant testing, and radiographic testing are some examples of NDT methods. These techniques enable the detection of surface or internal defects, cracks, and discontinuities that may compromise the steel's integrity. 6. Impact Testing: Impact testing measures a steel's ability to absorb energy under high-stress conditions. It involves striking a notched sample with a pendulum and measuring the energy absorbed during fracture. This type of testing provides valuable insights into the steel's toughness and its resistance to sudden shocks or impacts. 7. Corrosion Testing: Corrosion testing is conducted to evaluate a steel's resistance to corrosion in different environments. It helps determine the steel's susceptibility to rust, oxidation, or chemical attack, which is crucial for applications in corrosive settings. By employing these commonly used techniques, manufacturers and quality control professionals can ensure that special steel meets the required standards and specifications, guaranteeing its reliability and performance in various industries and applications.
Q:What are the challenges in welding special steel?
One of the main challenges in welding special steel is its high carbon content, which can result in increased hardness and brittleness. This requires careful control of the welding process, including preheating and post-weld heat treatment, to prevent cracking and ensure proper weld strength. Additionally, special steels often have alloying elements that can influence the weldability, such as chromium, nickel, or molybdenum, requiring specific filler materials and welding techniques. Overall, the challenges in welding special steel lie in achieving a strong and defect-free weld while maintaining the desired mechanical properties of the steel.
Q:How does special steel contribute to the automotive parts industry?
Special steel plays a crucial role in the automotive parts industry as it offers enhanced strength, durability, and resistance to corrosion. This type of steel is specifically designed to meet the demanding requirements of various automotive components, such as engine parts, chassis, and suspension systems. By utilizing special steel, automakers can ensure that their vehicles possess the necessary structural integrity and reliability, ultimately enhancing safety and performance. Additionally, the use of special steel allows for the production of lighter and more fuel-efficient vehicles, contributing to the industry's efforts in reducing carbon emissions and promoting sustainability.
Q:How does special steel perform in extreme environments?
Special steel is specifically designed to perform exceptionally well in extreme environments. It has excellent resistance to corrosion, high temperatures, and mechanical stress, making it highly reliable and durable. Special steel also maintains its strength and integrity even in challenging conditions, ensuring optimal performance and longevity in extreme environments.
Q:What are the different low-temperature grades of special steel?
There are several low-temperature grades of special steel, including but not limited to: austenitic stainless steel, ferritic stainless steel, martensitic stainless steel, and duplex stainless steel. These grades are specifically designed to maintain their strength and toughness at low temperatures, making them suitable for applications in cryogenic environments.
Q:How does special steel perform in terms of high-temperature strength?
Special steel is known for its exceptional high-temperature strength. It exhibits excellent resistance to deformation, creep, and thermal fatigue, allowing it to maintain its structural integrity and mechanical properties even under extreme heat conditions. This makes special steel a reliable choice for applications that require resistance to high temperatures, such as in aerospace, power generation, and industrial furnaces.
Q:How is special steel used in the defense industry?
Special steel is used in the defense industry for various applications such as manufacturing armored vehicles, aircraft carriers, submarines, and military-grade firearms. Its exceptional strength, durability, and resistance to high temperatures make it ideal for constructing critical components and structures that require enhanced protection and performance in combat situations.
Q:How is electrical steel used in the production of transformers and motors?
Electrical steel is primarily used in the production of transformers and motors due to its unique magnetic properties. It is a type of steel that has been specifically designed to have high magnetic permeability, low core losses, and reduced eddy current losses. These properties make electrical steel an ideal material for constructing the cores of transformers and motors. The laminated structure of electrical steel helps to minimize energy losses by reducing the impact of eddy currents. Overall, electrical steel plays a crucial role in enhancing the efficiency and performance of transformers and motors by optimizing the magnetic circuit and reducing energy losses.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords