• Solartec  5000 on grid inverter with WIFI System 1
  • Solartec  5000 on grid inverter with WIFI System 2
Solartec  5000 on grid inverter with WIFI

Solartec 5000 on grid inverter with WIFI

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
10000 set/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Solartec 1500,2000,2500,3000,3600,4000,4600,5000

  • 1MPPT, single phase

  • IP 65

  • New mold with Pure thick aluminum crust

    Efficient
    ■  Efficiency of up to 97.6 %
    ■  Transformerless

    Safe
    ■  Integrated DC switch
    ■  Comprehensive protection functions

    Flexible
    ■  LCD backlight
    ■  For indoor and outdoor installation

    Simple
    ■ ‘Plug and play’connection for easy installation
    ■  Friendly interface, easy to install and maintain



Q:How does a solar inverter handle power factor correction?
A solar inverter handles power factor correction by using advanced control algorithms and circuitry to actively manage and adjust the power factor of the electrical output. It does this by continuously monitoring the load and adjusting the phase angle and voltage to ensure that the power factor remains close to unity (1.0). This helps optimize the efficiency of the solar system and ensures that the power being generated is in sync with the grid requirements.
Q:How does a solar inverter handle variations in ambient temperature?
A solar inverter is designed to handle variations in ambient temperature by incorporating temperature compensation algorithms. These algorithms adjust the inverter's performance parameters, such as voltage and frequency, based on temperature measurements. This ensures that the inverter operates optimally and efficiently across a wide range of temperature conditions, maintaining stable and reliable power conversion from the solar panels.
Q:What is the difference between a PV grid-connected inverter and an off-grid inverter?
Off-grid inverter is equivalent to their own to establish an independent small power grid, mainly to control their own voltage, is a voltage source.
Q:What is the maximum DC input current for a solar inverter?
The maximum DC input current for a solar inverter will depend on the specific model and specifications of the inverter being used. It is important to refer to the manufacturer's documentation or consult the product's technical specifications to determine the maximum DC input current for a particular solar inverter.
Q:How does a solar inverter handle voltage fluctuations from the grid?
A solar inverter handles voltage fluctuations from the grid by continuously monitoring the incoming voltage. When fluctuations occur, the inverter adjusts its internal components to maintain a stable output voltage. It does this by regulating the power conversion process, either by decreasing or increasing the output voltage as necessary. This ensures that the solar energy generated by the panels remains at a consistent level, regardless of the voltage fluctuations from the grid.
Q:How does a solar inverter handle voltage sags or swells in the grid?
A solar inverter handles voltage sags or swells in the grid by continuously monitoring the grid voltage. When a sag or swell is detected, the inverter adjusts its output voltage accordingly to maintain a stable and consistent supply of power. It does this by regulating the amount of power it injects into the grid or by temporarily disconnecting from the grid to protect itself and other connected devices. This helps to prevent damage to the inverter and ensures that the solar system can continue operating efficiently even during voltage fluctuations.
Q:Can a solar inverter be used in a net metering system?
Yes, a solar inverter can be used in a net metering system. A solar inverter is an essential component of a solar energy system, as it converts the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power homes and businesses. In a net metering system, excess electricity generated by the solar panels is fed back into the grid, and a solar inverter facilitates this process by synchronizing the electricity produced with the utility grid.
Q:How do you connect a solar inverter to a data monitoring system?
To connect a solar inverter to a data monitoring system, you need to follow a few steps. First, ensure that your solar inverter is compatible with a data monitoring system. Next, connect the inverter to a local network, either wired or wireless, depending on the available options. Then, configure the inverter's settings to enable data transmission. Finally, install the required software or app provided by the data monitoring system and use the provided instructions to link the inverter to the monitoring system.
Q:How does a solar inverter interact with the electrical grid?
A solar inverter interacts with the electrical grid by converting the direct current (DC) produced by solar panels into alternating current (AC), which is the standard form of electricity used in the grid. It synchronizes the AC output with the grid's frequency and voltage levels, allowing the solar energy to be seamlessly integrated and fed into the grid. Additionally, the inverter monitors the grid's requirements and adjusts the power output accordingly, ensuring efficient and safe operation while maintaining grid stability.
Q:Can a solar inverter be used in areas with high altitude and low temperature conditions?
Yes, a solar inverter can be used in areas with high altitude and low temperature conditions. However, it is important to consider certain factors when selecting a solar inverter for such conditions. High altitude can affect the efficiency of the solar inverter due to reduced air density and oxygen levels. This can lead to a decrease in the power output of the solar panels. Therefore, it is crucial to choose an inverter that is specifically designed to work at high altitudes. These inverters are equipped with features such as advanced cooling systems and improved power electronics to ensure optimal performance in such conditions. Low temperature conditions can also impact the efficiency of a solar inverter. Cold temperatures can affect the inverter's internal components and reduce its overall performance. To overcome this, it is recommended to select an inverter that is designed to operate in low-temperature environments. These inverters are typically equipped with features such as internal heaters and temperature sensors to maintain optimal performance even in freezing temperatures. Additionally, it is advisable to consult with a professional solar installer or manufacturer who can provide guidance on the most suitable solar inverter for high altitude and low-temperature conditions. They can consider factors such as local climate, altitude, and specific installation requirements to ensure the system is designed to withstand and perform optimally in these challenging conditions.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords