• Sunpower Solar Cells for Sale - PV Solar Energy Panel Mono TÜV with IEC61215 System 1
Sunpower Solar Cells for Sale - PV Solar Energy Panel Mono TÜV with IEC61215

Sunpower Solar Cells for Sale - PV Solar Energy Panel Mono TÜV with IEC61215

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
500000 pc
Supply Capability:
100000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Specifications

1.withstand high wind pressure and snow load.

2.with IEC61215/61730, TUV, CE, ISO

3.high conversion efficiency

ITEM NO.NBJ-180 M
Maximum Power (W)180
Optimum Power Voltage (V mp)36.9
Optimum Operating Current (I mp): 4.88
Open Circuit Voltage (Voc)44.3
Short Circuit Current (ISC)5.22
Cell Efficiency (%)16.50%
Module Efficiency (%)14.10%
FF (%)70-76%
Warranty90% of 10 years, 80% of 25 years.
Standard Test ConditionsAM1.5 1000W/m2 25 +/-2°C
Bypass Diode Rating (A)12
Cable & Connector TypePass the TUV Certificate
Brand Name of Solar Cells----Cell
Size of Module (mm)1580*808*35
Solar Cell125*125 Mono
Backing (Material)TPT
Frame (Material Corners, etc.)Aluminum-alloy
Number of Cell (PCS)6*12
N/W(KG)15.5
Junction Box TypePass the TUV Certificate
Tolerance Wattage (e.g. + /-5%)±3%
Front Glass Thickness (mm)3.2
Surface Maximum Load Capacity5400Pa
Allowable Hail Load23m/s, 7.53g
Packing1*20' GP276pcs
1*40' GP644pcs
Temperature Coefficients of ISC(%)°C: 0.04
Temperature Coefficients of Voc(%)°C: -0.38
Temperature Coefficients of Pm(%)°C: -0.47
Temperature Coefficients of IM(%)°C: 0.04
Temperature Coefficients of VM(%)°C: -0.38
Temperature Range -40°C to +85°C

TUV, IEC, CE Certified photovoltaic /pv solar energy panel

 

Description:

1.high conversion efficiency

2.sealed with high transparency low-iron tempered glass, anti-aging EVA, high insulation TPT.

3.withstand high wind pressure and snow load.

4.with IEC61215/61730, TUV, CE, ISO

 

Warranty:

1) 5 years for material & workmanship;

2) 12 years for 90% power output;

3) 25 years for 80% power output.

* MOQ: 50pcs

* Delivery Time: 10-20 days after order confirmation

* Package: Wooden carton or pallet packing

 

Photovoltaic energy conversion is the key to electricity generation by solar panels.  This takes place when photons with sufficient energy excite charge carriers to higher energy levels.  The built-in asymmetry of the solar cells separates the carriers both in space and energy. The number of charge carriers collected at the external terminals determines the net current produced by the solar cell. The energy differences maintained between the charge carriers when extracted at the external terminals is converted to electrical voltage. The photovoltaic process is shown below:

PV Solar Energy Panel Mono TUV with IEC61215

As listed above, the power generation of the solar cell happens in three steps—photo generation of charge carriers, separation of charge carriers, and transport of the charge carriers from the point of generation to the external electrical connections—and all three steps must be performed well to produce an efficient solar cell.

The efficiency of a solar cell is defined as the ratio between the output of electrical power and the available power of the light falling onto the module.  More commonly, this is referred to as the conversion efficiency of the solar cell.  This is measured under a well-defined set of standard testing conditions.  The reason for this standardised testing is that efficiency is a key metric for the solar industry, and that both producers and researchers need to be able to compare efficiencies obtained using different technologies.  Modules are traded on efficiency ($/kWh), not number of units.  The efficiency of a module depends heavily on the quality of the material used in manufacturing, which means it may make economic sense to invest more in materials and processes higher in the value chain if they significantly increase efficiency.  Below typical solar cell characteristics are shown:

 PV Solar Energy Panel Mono TUV with IEC61215

Solar cells convert light energy into electrical energy either indirectly by first converting it into heat, or through a direct process known as the photovoltaic effect. The most common types of solar cells are based on the photovoltaic effect, which occurs when light falling on a two-layer semiconductor material produces a potential difference, or voltage, between the two layers. The voltage produced in the cell is capable of driving a current through an external electrical circuit that can be utilized to power electrical devices. This tutorial explores the basic concepts behind solar cell operation.

Q: Can solar cells be used in hybrid systems?
Yes, solar cells can be used in hybrid systems. Hybrid systems combine different sources of energy, such as solar, wind, or fossil fuels, to generate electricity. Solar cells can be integrated into these systems to harness solar energy and contribute to the overall power generation. This allows for a more sustainable and efficient energy production, reducing reliance on traditional energy sources.
Q: Can solar cells be used in mountainous regions?
Yes, solar cells can be used in mountainous regions. In fact, mountainous regions can often be advantageous for solar energy generation due to the higher altitude and reduced air pollution, which can result in increased solar radiation. However, the installation of solar panels may require careful consideration of factors such as slope, orientation, and potential shading from surrounding mountains or trees.
Q: Can solar cells be used for powering telecommunications towers?
Yes, solar cells can be used for powering telecommunications towers. Solar panels can generate electricity by converting sunlight into usable energy, which can then be used to power various devices and infrastructure, including telecommunications towers. This renewable energy source provides a sustainable and environmentally friendly solution for powering such towers, especially in remote or off-grid areas.
Q: How are solar cells connected in a photovoltaic system?
Solar cells are connected in a photovoltaic system in series or parallel configurations to generate the desired voltage and current output.
Q: What is the history of solar cell development?
The history of solar cell development dates back to the 19th century when the photovoltaic effect was first discovered by French physicist Alexandre-Edmond Becquerel in 1839. However, it wasn't until 1954 that the first practical silicon solar cell was developed by Bell Labs scientists. This breakthrough led to the commercialization of solar cells and their initial use in space applications, such as powering satellites. Throughout the 1960s and 1970s, solar cell technology continued to advance, primarily driven by research and development efforts in the United States. The energy crisis of the 1970s further fueled interest in renewable energy, including solar cells, leading to increased investment and technological advancements. In the 1980s and 1990s, solar cells became more efficient and affordable, making them increasingly popular for off-grid applications, such as powering remote locations and providing electricity to rural communities. Governments and organizations worldwide started implementing policies and incentives to promote solar energy adoption. In the early 2000s, there was a significant growth in the solar industry, driven by technological improvements, increased manufacturing scale, and declining production costs. This led to the widespread adoption of solar panels for residential and commercial use, as well as grid-connected solar power plants. Today, solar cells continue to evolve, with ongoing research focused on improving efficiency, durability, and reducing costs. The integration of solar cells into various applications, such as building materials and consumer electronics, further expands their potential. The solar industry plays a crucial role in the global shift towards clean and sustainable energy sources.
Q: Can solar cells be used in desert regions?
Yes, solar cells can be used in desert regions. In fact, desert regions are ideal for solar energy generation due to their high levels of solar radiation and clear skies. The availability of ample sunlight and vast open spaces make deserts well-suited for large-scale solar power installations, such as solar farms or concentrated solar power plants. Additionally, the arid climate in deserts minimizes the risk of cloud cover or rain interfering with solar energy production.
Q: Can solar cells be used to power large-scale industrial facilities?
Yes, solar cells can be used to power large-scale industrial facilities. Advances in solar technology have made it possible to install solar panels on a large scale, integrating them into the energy infrastructure of industrial facilities. Solar power can provide a sustainable and cost-effective solution for meeting the energy demands of these facilities, reducing their carbon footprint and dependence on fossil fuels. However, the feasibility of using solar power for large-scale industrial facilities depends on various factors such as location, available space, energy requirements, and financial considerations.
Q: Can solar cells be used in urban areas?
Yes, solar cells can be used in urban areas. In fact, they are increasingly being used in cities worldwide as a renewable energy solution. With the advancement of technology, solar cells can be installed on rooftops, facades, and even integrated into urban infrastructure like streetlights and bus shelters. This allows urban areas to harness clean energy from the sun and reduce their dependence on fossil fuels, contributing to a more sustainable and environmentally friendly future.
Q: Can solar cells be used in agricultural irrigation systems?
Yes, solar cells can be used in agricultural irrigation systems. Solar-powered irrigation systems can effectively harness the energy from the sun to power water pumps and provide a sustainable and cost-effective solution for irrigation needs in agricultural settings. This technology reduces dependence on traditional energy sources and helps conserve water resources while promoting environmentally friendly practices in agriculture.
Q: What is the role of solar cells in powering water pumping systems?
Solar cells play a crucial role in powering water pumping systems as they convert sunlight directly into electricity. This renewable energy source eliminates the need for traditional power sources and reduces the reliance on fossil fuels, making water pumping systems more environmentally friendly and sustainable. Additionally, solar cells provide a reliable and cost-effective solution, particularly in remote areas where access to electricity may be limited, ensuring that water can be pumped efficiently for various applications such as irrigation, agriculture, and domestic use.
Our company is a High-tech enterprise, who is professional on manufacturing on solar photovoltaic products. We mainly produce the solar module and system. Our annual production capacity of solar module is 50MW.Meanwhile,we also undertake the design, installation and serviceonbothon-grid & off-grid system for home and power plant.

1. Manufacturer Overview

Location Zhejiang,China (Mainland)
Year Established 2006
Annual Output Value Above US$100 Million
Main Markets North America 2.90%
South America 25.60%
Eastern Europe 4.83%
Southeast Asia 9.18%
Africa 1.16%
Mid East 2.90%
Western Europe 19.81%
Central America 2.41%
Northern Europe 9.95%
Southern Europe 8.21%
South Asia 0.97%
Domestic Market 12.08%
Company Certifications ISO 9001:2008

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a) Trade Capacity
Nearest Port Rotterdam,Hamburg
Export Percentage 81% - 90%
No.of Employees in Trade Department 6-10 People
Language Spoken: English, Chinese, Japanese, German, French
b) Factory Information
Factory Size: 3,000-5,000 square meters
No. of Production Lines 5
Contract Manufacturing OEM Service Offered Design Service Offered Buyer Label Offered
Product Price Range Low and/or Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords