• Sunpower Solar Cells for Sale - PV Solar Energy Panel Mono TÜV with IEC61215 System 1
Sunpower Solar Cells for Sale - PV Solar Energy Panel Mono TÜV with IEC61215

Sunpower Solar Cells for Sale - PV Solar Energy Panel Mono TÜV with IEC61215

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
500000 pc
Supply Capability:
100000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Specifications

1.withstand high wind pressure and snow load.

2.with IEC61215/61730, TUV, CE, ISO

3.high conversion efficiency

ITEM NO.NBJ-180 M
Maximum Power (W)180
Optimum Power Voltage (V mp)36.9
Optimum Operating Current (I mp): 4.88
Open Circuit Voltage (Voc)44.3
Short Circuit Current (ISC)5.22
Cell Efficiency (%)16.50%
Module Efficiency (%)14.10%
FF (%)70-76%
Warranty90% of 10 years, 80% of 25 years.
Standard Test ConditionsAM1.5 1000W/m2 25 +/-2°C
Bypass Diode Rating (A)12
Cable & Connector TypePass the TUV Certificate
Brand Name of Solar Cells----Cell
Size of Module (mm)1580*808*35
Solar Cell125*125 Mono
Backing (Material)TPT
Frame (Material Corners, etc.)Aluminum-alloy
Number of Cell (PCS)6*12
N/W(KG)15.5
Junction Box TypePass the TUV Certificate
Tolerance Wattage (e.g. + /-5%)±3%
Front Glass Thickness (mm)3.2
Surface Maximum Load Capacity5400Pa
Allowable Hail Load23m/s, 7.53g
Packing1*20' GP276pcs
1*40' GP644pcs
Temperature Coefficients of ISC(%)°C: 0.04
Temperature Coefficients of Voc(%)°C: -0.38
Temperature Coefficients of Pm(%)°C: -0.47
Temperature Coefficients of IM(%)°C: 0.04
Temperature Coefficients of VM(%)°C: -0.38
Temperature Range -40°C to +85°C

TUV, IEC, CE Certified photovoltaic /pv solar energy panel

 

Description:

1.high conversion efficiency

2.sealed with high transparency low-iron tempered glass, anti-aging EVA, high insulation TPT.

3.withstand high wind pressure and snow load.

4.with IEC61215/61730, TUV, CE, ISO

 

Warranty:

1) 5 years for material & workmanship;

2) 12 years for 90% power output;

3) 25 years for 80% power output.

* MOQ: 50pcs

* Delivery Time: 10-20 days after order confirmation

* Package: Wooden carton or pallet packing

 

Photovoltaic energy conversion is the key to electricity generation by solar panels.  This takes place when photons with sufficient energy excite charge carriers to higher energy levels.  The built-in asymmetry of the solar cells separates the carriers both in space and energy. The number of charge carriers collected at the external terminals determines the net current produced by the solar cell. The energy differences maintained between the charge carriers when extracted at the external terminals is converted to electrical voltage. The photovoltaic process is shown below:

PV Solar Energy Panel Mono TUV with IEC61215

As listed above, the power generation of the solar cell happens in three steps—photo generation of charge carriers, separation of charge carriers, and transport of the charge carriers from the point of generation to the external electrical connections—and all three steps must be performed well to produce an efficient solar cell.

The efficiency of a solar cell is defined as the ratio between the output of electrical power and the available power of the light falling onto the module.  More commonly, this is referred to as the conversion efficiency of the solar cell.  This is measured under a well-defined set of standard testing conditions.  The reason for this standardised testing is that efficiency is a key metric for the solar industry, and that both producers and researchers need to be able to compare efficiencies obtained using different technologies.  Modules are traded on efficiency ($/kWh), not number of units.  The efficiency of a module depends heavily on the quality of the material used in manufacturing, which means it may make economic sense to invest more in materials and processes higher in the value chain if they significantly increase efficiency.  Below typical solar cell characteristics are shown:

 PV Solar Energy Panel Mono TUV with IEC61215

Solar cells convert light energy into electrical energy either indirectly by first converting it into heat, or through a direct process known as the photovoltaic effect. The most common types of solar cells are based on the photovoltaic effect, which occurs when light falling on a two-layer semiconductor material produces a potential difference, or voltage, between the two layers. The voltage produced in the cell is capable of driving a current through an external electrical circuit that can be utilized to power electrical devices. This tutorial explores the basic concepts behind solar cell operation.

Q:Can solar cells be used in museums?
Yes, solar cells can be used in museums. They can provide renewable energy to power museum exhibits, lighting, and other electrical systems, reducing the reliance on traditional energy sources and minimizing the environmental impact. Additionally, solar cells can be integrated into the design of the museum building itself, enhancing its sustainability and showcasing a commitment to renewable energy.
Q:How do solar cells affect the environment?
Solar cells have a positive impact on the environment as they generate electricity from a renewable source, the Sun, without emitting greenhouse gases or harmful pollutants. This reduces reliance on fossil fuels, mitigates air and water pollution, and contributes to the fight against climate change. Additionally, solar energy does not require water for operation, which helps conserve this precious resource. Although there are some environmental concerns related to the production and disposal of solar cells, the overall benefits greatly outweigh these drawbacks.
Q:Are solar cells recyclable?
Yes, solar cells are recyclable.
Q:Can solar cells be installed on any type of roof?
Yes, solar cells can be installed on almost any type of roof, including flat roofs, sloped roofs, metal roofs, tile roofs, and even asphalt shingle roofs. However, the specific installation process may vary depending on the type of roof and its structural integrity. It is always recommended to consult with a professional solar installer to assess the feasibility of installation on a particular roof type.
Q:How do solar cells handle electromagnetic fields from power lines?
Solar cells are not affected by electromagnetic fields from power lines as they are designed to convert sunlight into electricity and not sensitive to external electromagnetic interference.
Q:How do solar cells handle electromagnetic pulses?
Solar cells are generally not designed to handle electromagnetic pulses (EMPs) directly. EMPs can cause a sudden surge in electrical energy, which can potentially damage or destroy electronic devices, including solar cells. However, solar cells usually have built-in protection mechanisms and are often shielded by other components in a solar panel system, such as inverters or charge controllers, which can help mitigate the effects of EMPs. Additionally, the impact of EMPs on solar cells can vary depending on factors such as the magnitude and proximity of the pulse, as well as the quality and design of the solar cell system.
Q:Can solar cells be used to charge batteries?
Yes, solar cells can be used to charge batteries. Solar cells convert sunlight into electrical energy, which can be harnessed to charge batteries by connecting them to a solar panel. The solar panel absorbs sunlight, converts it into electricity, and then transfers that energy to charge the batteries.
Q:Can solar cells be used in powering medical devices?
Yes, solar cells can be used in powering medical devices. Solar cells convert sunlight into electricity, which can then be used to power various medical devices such as portable diagnostic tools, wearable health monitors, or even small medical implants. This technology offers a sustainable and reliable energy source, particularly in areas with limited access to electricity or during emergencies where traditional power sources may not be available.
Q:What is the role of anti-islanding devices in solar cell systems?
The role of anti-islanding devices in solar cell systems is to ensure the safe and proper functioning of the grid-connected solar power system. These devices detect when there is a power outage or grid failure and disconnect the solar system from the grid to prevent any potential backfeeding of electricity. This is important to protect utility workers who may be working on the grid during an outage and to avoid damage to the system or electrical appliances in the event of an islanding condition. By preventing islanding, anti-islanding devices help maintain the stability and reliability of the electrical grid.
Q:What is the role of silicon in solar cells?
The role of silicon in solar cells is to act as a semiconductor material that can absorb sunlight and convert it into electricity through the photovoltaic effect. Silicon is the most commonly used material in solar cell manufacturing due to its abundance, stability, and ability to efficiently convert sunlight into electricity. It forms the basis of the p-n junction, which allows for the separation and movement of electrons and holes, generating an electric current.
Our company is a High-tech enterprise, who is professional on manufacturing on solar photovoltaic products. We mainly produce the solar module and system. Our annual production capacity of solar module is 50MW.Meanwhile,we also undertake the design, installation and serviceonbothon-grid & off-grid system for home and power plant.

1. Manufacturer Overview

Location Zhejiang,China (Mainland)
Year Established 2006
Annual Output Value Above US$100 Million
Main Markets North America 2.90%
South America 25.60%
Eastern Europe 4.83%
Southeast Asia 9.18%
Africa 1.16%
Mid East 2.90%
Western Europe 19.81%
Central America 2.41%
Northern Europe 9.95%
Southern Europe 8.21%
South Asia 0.97%
Domestic Market 12.08%
Company Certifications ISO 9001:2008

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port Rotterdam,Hamburg
Export Percentage 81% - 90%
No.of Employees in Trade Department 6-10 People
Language Spoken: English, Chinese, Japanese, German, French
b)Factory Information  
Factory Size: 3,000-5,000 square meters
No. of Production Lines 5
Contract Manufacturing OEM Service Offered Design Service Offered Buyer Label Offered
Product Price Range Low and/or Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords