• Prime 700-1250mm PPGI Cold Rolled Steel Coil System 1
  • Prime 700-1250mm PPGI Cold Rolled Steel Coil System 2
  • Prime 700-1250mm PPGI Cold Rolled Steel Coil System 3
  • Prime 700-1250mm PPGI Cold Rolled Steel Coil System 4
  • Prime 700-1250mm PPGI Cold Rolled Steel Coil System 5
  • Prime 700-1250mm PPGI Cold Rolled Steel Coil System 6
Prime 700-1250mm PPGI Cold Rolled Steel Coil

Prime 700-1250mm PPGI Cold Rolled Steel Coil

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
500000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Alloy Steel
Shape:
Steel Coil
Standard:
AISI,ASTM,JIS,GB,BS,DIN,API,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Net Weight:
2MT
Length:
12m
Thickness:
0.2 - 2.0MM

Prime 700-1250mm PPGI Cold Rolled Steel Coil


Description of Prime 700-1250mm PPGI Cold Rolled Steel Coil

Product

PPGI/PPGL

Capacity

5,000 tons/month

Base material

Hot dipped galvanized steel

Thickness

0.2-2.0mm

Width

600-1250mm(according to your need)

Coil Weight

3-6tons

Quality

SGCC, DX51D

Color

RAL No. or customers samples’ color

Zinc-coating

30g/m2-180g/m2

Coil ID

508mm/610mm

Technique

Cold rolled—hot dipped galvanized—color coated

Painting

Top painting:15~25μm

Back painting: 6~10μm

Tolerance

Thickness: +/-0.02mm

Width:+/-2mm

Shipment time

within 15-45 workdays

Payment

 T/T, L/C at sight 

Packing

Standard export packing

The special order can be negotiated.


Application of Prime 700-1250mm PPGI Cold Rolled Steel Coil

APPLICATION OF OUR PREPAINTED STEEL

Construction

Outside

Workshop,agricultural   warehouse,residential precast unit

corrugated roof,roller   shutter door,rainwater drainage pipe,retailer booth

Inside

Door,doorcase,light   steel roof stucture,folding screen,elevator,stairway,ven gutter,Construction Wall

Electrical applicance 

Refrigerator,washer,switch   cabnet,instrument cabinet,air conditioning,micro-wave owen,bread maker

Fuiniture

Central   heating slice,lampshade,chifforobe,desk,bed,locker,bookself

Carrying trade

Exterior   decoration of auto and train,clapboard,container,isolation lairage,isolation   board

Qthers 

Writing   panel,garbagecan,billboard,timekeeper,typewriter,instrument panel,weight   sensor,photographic equipment


Products Show of Prime 700-1250mm PPGI Cold Rolled Steel Coil

PPGI Coils from Tianjin Steel Material Mills

Product Advantages

1.With nearly 20 years   experience in prepainted steel, accommodate   different marketdemands.

2.'Quality first, service first' is our business   aim; 'The good faith get respect,cast quality market' is our Business philosophy . 

3.Having two series producttion line,with the abbual production capacity of 240000 tons.

4.Exceed International ISO9001:2008&ISO14001:2004 quality and environmental standards 

5.Meet with ROHS standard


Company Information

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Astm 615 Bs4449 B500B Deformed Steel RebarsAstm 615 Bs4449 B500B Deformed Steel Rebars 


F A Q

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q:How are tool steels used in the manufacturing of cutting tools?
Tool steels are used in the manufacturing of cutting tools due to their high hardness, wear resistance, and ability to withstand high temperatures. They are typically used to create the blades or edges of cutting tools such as drills, saws, and knives. Tool steels allow for precise and efficient cutting by maintaining their sharpness for longer durations, providing durability and strength to the cutting tools.
Q:How is special steel used in the production of bearings for high-speed applications?
Special steel is extensively used in the production of bearings for high-speed applications due to its unique properties that make it ideal for such demanding conditions. Bearings play a critical role in facilitating smooth and efficient movement between two surfaces, and high-speed applications require bearings to withstand extreme forces and rotational speeds. In order to meet these requirements, special steel is chosen for its exceptional strength, durability, and wear resistance. The composition of special steel allows it to maintain its structural integrity even under high loads, preventing deformation and ensuring the longevity of the bearing. Additionally, special steel possesses excellent hardness and toughness, enabling it to resist wear and fatigue caused by repetitive high-speed rotations. This property is crucial in high-speed applications where continuous motion can generate significant heat and friction, leading to premature wear and failure of the bearing. The use of special steel helps to minimize these issues and ensures reliable and efficient performance. Furthermore, special steel has superior heat resistance, which is vital in high-speed applications where temperatures can rise due to friction and high rotational speeds. The ability of special steel to withstand elevated temperatures without losing its mechanical properties or deforming is crucial for preventing premature failure of the bearing and ensuring long-term performance. In summary, special steel is an essential material in the production of bearings for high-speed applications due to its exceptional strength, durability, wear resistance, and heat resistance. These properties allow bearings to operate reliably and efficiently even under extreme conditions, ensuring smooth movement and minimizing the risk of premature failure.
Q:How does heat treatment affect the properties of special steel?
Heat treatment can significantly impact the properties of special steel. By subjecting the steel to controlled heating and cooling processes, its mechanical properties can be modified. For instance, heat treatment can enhance the steel's hardness, strength, and toughness, making it more suitable for specific applications. Additionally, heat treatment can alter the steel's microstructure, such as grain size and distribution, thereby affecting its corrosion resistance and overall performance. Overall, heat treatment plays a crucial role in tailoring the properties of special steel to meet desired requirements.
Q:How are magnesium alloys used in lightweight structures?
Magnesium alloys are used in lightweight structures due to their exceptional strength-to-weight ratio. These alloys offer high strength and stiffness while being significantly lighter than other metals like steel or aluminum. This makes them ideal for applications in sectors such as aerospace, automotive, and sports equipment, where weight reduction is crucial without compromising structural integrity. Additionally, magnesium alloys possess good vibration damping properties, corrosion resistance, and excellent machinability, making them even more advantageous for lightweight structure design.
Q:What are the different types of wear-resistant steel?
There are several types of wear-resistant steel, including AR400, AR450, AR500, and Hardox. These steels are specifically designed to withstand abrasion, impact, and wear in various applications such as mining, construction, and manufacturing.
Q:What is the impact of high temperature on the mechanical properties of special steel?
High temperature has a significant impact on the mechanical properties of special steel. When exposed to high temperatures, special steel may undergo a phenomenon called thermal softening, where its mechanical strength decreases. This is primarily due to the reduction in the material's yield strength and hardness at elevated temperatures. One of the key effects of high temperature on special steel is the reduction in its ability to resist deformation. At elevated temperatures, the steel becomes more ductile, meaning it is more prone to elongation and plastic deformation. This increase in ductility can result in a decrease in the material's ability to maintain its shape and integrity under load, which can lead to distortion, warping, or even failure of the component. Furthermore, high temperatures can also cause changes in the microstructure of special steel. For instance, prolonged exposure to elevated temperatures can lead to the formation and growth of grain boundaries, which can weaken the material's mechanical properties. Additionally, high temperature can promote the diffusion of impurities or alloying elements within the steel, altering its chemical composition and potentially affecting its mechanical behavior. Another consequence of high temperature on special steel is the reduction in its resistance to corrosion and oxidation. At elevated temperatures, the steel is more susceptible to oxidation, which can result in the formation of scales or even complete material degradation. This can compromise the steel's mechanical properties, such as its strength and toughness. In conclusion, high temperature has a detrimental impact on the mechanical properties of special steel. It reduces the material's strength, increases its ductility, alters its microstructure, and decreases its resistance to corrosion and oxidation. Therefore, it is crucial to consider the effects of high temperature when designing and selecting special steel for applications that involve exposure to elevated temperatures.
Q:Can special steel be used in the defense sector?
Indeed, in the defense sector, special steel finds itself as a viable option. Special steel, which encompasses alloys or compositions designed with specific attributes such as high strength, hardness, resistance to corrosion, or heat resistance, proves to be suitable for a range of defense applications. These applications include the construction of armored vehicles, naval vessels, aircraft, and weaponry. Within the defense sector, special steel serves as a valuable resource for manufacturing components and structures necessitating exceptional strength and durability. For instance, it can be utilized to produce armor plates for tanks and armored vehicles, which must endure high impact and ballistic threats. Additionally, special steel can be employed in the construction of naval vessels, providing corrosion resistance and enhancing overall structural integrity. Furthermore, the defense industry heavily relies on special steel for manufacturing aircraft parts and weaponry. Aircraft components, such as landing gear, engine parts, and structural elements, demand materials of high strength to ensure safe and reliable operation. Special steel alloys fulfill this requirement by providing the necessary strength and resistance to extreme conditions, including high temperatures and pressures, making them an ideal choice for these applications. Moreover, special steel plays a vital role in the production of various types of weapons, such as firearms and blades. Its exceptional strength and hardness properties render it suitable for manufacturing gun barrels, bulletproof vests, and knives employed by military personnel. To summarize, special steel holds significant value within the defense sector due to its exceptional properties, including strength, hardness, corrosion resistance, and heat resistance. Its extensive applications in the construction of armored vehicles, naval vessels, aircraft, and weaponry ensure the safety, durability, and effectiveness of military equipment.
Q:What are the different methods of improving the fatigue resistance of special steel?
Improving the fatigue resistance of special steel can be achieved through various methods. These methods aim to enhance the material's ability to withstand cyclic loading and prevent fatigue failure. One method commonly employed is heat treatment. Through processes like annealing, normalizing, or quenching and tempering, the special steel undergoes changes in its microstructure, resulting in improved strength, toughness, and fatigue resistance. Surface treatment is another effective approach. Techniques such as shot peening or surface hardening can significantly enhance the fatigue resistance of special steel. Shot peening involves bombarding the surface with high-velocity steel shots to induce compressive stresses that counteract tensile stresses during cyclic loading. Surface hardening methods, like carburizing or nitriding, create a hardened layer on the steel's surface, increasing its resistance to fatigue. Modifying the composition of the special steel through alloying is another way to enhance fatigue resistance. By adding specific alloying elements like chromium, molybdenum, or nickel, the material's strength, ductility, and resistance to fatigue crack initiation and propagation can be greatly improved. Grain refinement is also crucial for improving fatigue resistance. Techniques such as severe plastic deformation or thermomechanical processing can promote the formation of finer grains in the special steel. This reduces its susceptibility to fatigue crack initiation and propagation. Optimizing the microstructure of the special steel is achievable through techniques like controlled rolling, controlled cooling, or precipitation hardening. These methods aim to achieve a desirable microstructural balance, such as fine dispersion of precipitates or a refined grain structure, which improves the material's fatigue resistance. Managing residual stresses within the special steel is another important aspect. Techniques like stress relieving or balancing residual stresses through appropriate heat treatment can reduce the likelihood of fatigue crack initiation and propagation. It is important to consider that the specific method or combination of methods used to enhance fatigue resistance will depend on the specific alloy and application requirements. Thorough testing and evaluation should be conducted to ensure the effectiveness of these methods in improving the fatigue resistance of special steel.
Q:How does electrical steel minimize energy losses in electrical devices?
Electrical steel minimizes energy losses in electrical devices through its unique magnetic properties and composition. It is specifically designed to have low electrical conductivity and high magnetic permeability, which reduces eddy current losses and hysteresis losses. These losses occur due to the alternating magnetic fields generated in electrical devices, such as transformers and motors. By using electrical steel, these losses are minimized, resulting in more efficient energy transfer and reduced energy wastage.
Q:What are the different joining methods for special steel?
The different joining methods for special steel include welding, brazing, soldering, and adhesive bonding.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords