• Polycrystalline Solar Cells A GRADE 3BB 156*156mm with Low Price System 1
  • Polycrystalline Solar Cells A GRADE 3BB 156*156mm with Low Price System 2
  • Polycrystalline Solar Cells A GRADE 3BB 156*156mm with Low Price System 3
Polycrystalline Solar Cells A GRADE 3BB 156*156mm with Low Price

Polycrystalline Solar Cells A GRADE 3BB 156*156mm with Low Price

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
5000 pc
Supply Capability:
8000000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing


 

Polycrystalline Silicon Solar Cells:

Solar cells is made by solar wafer, it has three categories of solar cell right now, monocrystalline polycrystalline and thin film,These cells are entirely based around the concept of ap-n junction, which is the critical part of solar module, it is the part that can convert the light energy into electricity, the thickness is from 180um to 200um, with even busbars to conduct electricity, textured cell can decrease diffuse reflection; they are often electrically connected and encapsulated as a module. Photovoltaic modules often have a sheet of glass on the front (sun up) side, allowing light to pass while protecting  semiconductor wafers from abrasion and impact due to wind-driven debris, rain, hail, etc. Solar cells are also usually connected in series in modules, creating an additive voltage. Connecting cells in parallel will yield a higher current;With high quality and stable quality. Our Cells can greatly improve the performance of Solar Modules.

Polycrystalline Silicon Solar Cells Advantage:

•  High efficiency and stable performance in photovoltaic conversion.
•  Advanced diffusion technique ensuring the homogeneity of energy conversion efficiency of the cell.
•  Advanced PECVD film forming, providing a dark blue silicon nitride anti-reflection film of homogenous color and  attractive appearance.
•  High quality metal paste for back surface and electrode, ensuring good conductivity, high pulling strength and ease of soldering.
•  High precision patterning using screen printing, ensuring accurate busbar location for ease with automatic soldering a laser cutting. 

Physical characteristics 

Dimension: 156*156mm±0.5mm

Thickness:  wafer(si): 200μm±20μm

                      Cell: 240μm±40μm

Front: silver bus bars;dark blue/others silicon nitride anti reflection coating

Back: silver/aluminum bus bars;full-surface aluminum BSF

Specification:

Mechanical data and design

  Format          -       156 mm × 156 mm ± 0.5 mm  

Thickness-       -       200 μm ± 20 μm

Front (-)               1.4 mm bus bars (silver),blue anti-reflection coating (silicon nitride)

Back (+)           -     2 mm wide soldering pads (silver) back surface field (aluminium)

Temperature Coefficient of Cells

Voc. Temp .coef.%/K                 -0.364%/K   

Isc . Temp .coef.%/K                 +0.077%/K

Pm. Temp. coef.%/K                 -0.368%/K

 

Efficiency code

Efficiency(%)

Pmax(w)

Impp(A)

Vmpp(V)

Isc(A)

Voc(V)

182

≥18.20

4.43

8.26

0.536

8.71

0.634

180

18.0-18.2

4.38

8.22

0.533

8.68

0.632

178

17.8-18.0

4.33

8.17

0.530

8.63

0.630

176

17.6-17.8

4.28

8.12

0.527

8.60

0.627

174

17.4-17.6

4.23

8.08

0.524

8.56

0.625

172

17.2-17.4

4.19

8.05

0.521

8.53

0.622

170

17.0-17.2

4.14

7.99

0.518

8.49

0.620

168

16.8-17.0

4.09

7.94

0.515

8.45

0.618


Intensity Dependence

Intensity [W/m2]      Isc× [mA]          Voc× [mV]           Pmpp

1000                         1.00                    1.000                 1.00

900                           0.90                    1.000                 0.90

800                           0.80                    0.99                   0.80

500                           0.50                    0.96                   0.49

300                           0.30                    0.93                   0.29

200                           0.20                    0.92                   0.19

 

IV Curve

Polycrystalline Solar Cells A GRADE 3BB 156*156mm with Low Price

 

Solar Panel Images:

Polycrystalline Solar Cells A GRADE 3BB 156*156mm with Low Price


Polycrystalline Solar Cells A GRADE 3BB 156*156mm with Low Price

 

Packaging & Delivery of Polycrystalline Solar Cells

Carton Box Package and Deliver by air. It should be noticed that it should be avoid of water, sunshine and moist.


FAQ

We have organized several common questions for our clientsmay help you sincerely

What price for each watt?

It depends on the efficiency of the solar cell, quantity, delivery date and payment terms.

How long can we receive the product after purchase?

In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. The pecific time of receiving is related to the state and position of customers.Commonly 7 to 10 working days can be served.

Can you provide the peripheral products of the solar panels, such as the battery, controller, and inverter? If so, can you tell me how do they match each other?

Yes, we can, we have two companies for solar region, one is CNBM International, the other is CNBM engineering Co.

We can provide you not only the solar module but also the off grid solar system, we can also provide you service with on grid plant.

What is your warranty of solar cell?

 Our product can promise lower than 0.3% open box crack, we support claim after opening the box if it has crackm color difference or sth, the buyer should give pictures immediately, we can not accept the claim after the solar cell has assembled to solar panel.

• Timeliness of delivery

• How do you pack your products?

We have rich experience on how to pack the solar cell to make sure the safety on shipment, we could use wooden box or pallet as buyer's preference.

 Can you do OEM for us?

Yes, we can.

 

  

 

Solar power has been able respected, more and more widely used, in large part because it is environmentally friendly way of generating renewable power generation process does not produce carbon dioxide and other greenhouse gases, will not pollute the environment, and therefore widely. From the current terms of the types of solar cells, including crystalline silicon cells, thin film batteries and other battery materials. Monocrystalline silicon cells are divided into cells, polycrystalline cells and amorphous silicon thin-film batteries.

For solar cells, the most important parameter is the photoelectric conversion efficiency, developed in the laboratory of silicon-based solar cells, Monocrystalline silicon cell efficiency of 25.0%, polycrystalline silicon cell efficiency of 20.4%, CIGS thin-film cell efficiency of 19.6%, CdTe thin film cell efficiency of 16.7%, an amorphous silicon (amorphous silicon) thin film battery efficiency of 10.1%, while in practical application efficiency is slightly lower this level.

We are familiar with crystalline silicon cells into single crystal and polycrystalline, except that the silicon wafers. Monocrystalline wafers made of polysilicon raw material crystal pullers pull into a bar and then sliced into monocrystalline, polycrystalline silicon film is made of polysilicon through ingot casting furnaces made of polysilicon ingots and then sliced. Since the difference between the fabrications of polycrystalline silicon solar cell battery much. But the conversion rate, the current conversion rate of monocrystalline silicon cells generally 16% to 18% conversion rate of polycrystalline silicon cells generally 15% to 16%. From the comparison of production costs, polycrystalline silicon cells cheaper materials manufacturing simple, to save power consumption, lower overall production costs, get a lot of development. Therefore, polycrystalline silicon cells accounted for two-thirds of the amount of crystalline silicon cells, accounting for over 55% of the solar cell market share. However, although the cost of polysilicon occupies advantage, in addition to the conversion rate lower than the silicon, its service life is shorter than the Monocrystalline silicon solar cells.


Q:Can solar cells be used for powering electric vehicle charging stations with battery storage?
Yes, solar cells can be used to power electric vehicle charging stations with battery storage. Solar panels can generate electricity from the sun's rays, which can be used to charge electric vehicles directly or stored in batteries for later use. This enables sustainable and renewable energy sources to power the charging stations, reducing reliance on fossil fuels and minimizing carbon emissions.
Q:What is the role of solar cells in solar-powered water heaters?
The role of solar cells in solar-powered water heaters is to convert sunlight into electricity. These cells are typically made of silicon and absorb photons from the sun, generating an electrical current. This electricity is then used to power the water heater, which heats the water using the sun's energy. So, solar cells are crucial in harnessing solar energy and enabling the water heater to operate efficiently without relying on traditional electricity sources.
Q:Is the polymer solar cell the cheapest type among all the different kinds of solar cells?
I am not sure about that.
Q:Can solar cells be used in commercial buildings?
Yes, solar cells can definitely be used in commercial buildings. In fact, the use of solar cells in commercial buildings is becoming increasingly popular as it offers several benefits such as reduced energy costs, environmental sustainability, and a positive brand image. With advancements in technology, solar cells can now be integrated into the design of buildings, ensuring seamless integration and aesthetic appeal. Additionally, various financing options and government incentives make solar installations financially feasible for commercial buildings, further encouraging their adoption.
Q:How do solar cells impact energy consumption patterns?
Solar cells impact energy consumption patterns by providing a renewable and clean source of electricity. They reduce reliance on traditional fossil fuels, decrease greenhouse gas emissions, and promote sustainable energy practices. Solar cells enable individuals, businesses, and communities to generate their own power, leading to a more decentralized and resilient energy system. Additionally, solar energy contributes to a more balanced and diversified energy mix, reducing the strain on conventional power grids and enhancing energy security.
Q:Can solar cells be used in electric vehicle charging stations?
Yes, solar cells can be used in electric vehicle charging stations. Solar panels can capture sunlight and convert it into electricity, which can then be used to charge electric vehicles. This approach is known as solar-powered charging stations and is an environmentally friendly alternative to traditional grid-powered stations.
Q:Is a solar cell expensive to make?
No, it's not expensive because the most expensive part is the silicon.
Q:What are the different sizes of solar cells?
Solar cells come in various sizes, ranging from small portable panels for charging devices to large-scale installations used in solar farms. The sizes of solar cells can vary based on the specific application and power output requirements.
Q:How do solar cells perform in areas with high winds?
Solar cells can perform well in areas with high winds as long as they are properly installed and secured. However, excessive wind speeds can potentially damage or displace the solar panels, affecting their efficiency. To mitigate this, appropriate mounting systems and anchoring techniques can be used to ensure the stability and durability of solar installations in windy areas.
Q:What are the maintenance requirements for solar cells?
The maintenance requirements for solar cells are minimal. They generally require regular cleaning to remove dust or debris that may accumulate on the surface, and occasional inspection to ensure proper functioning and detect any signs of damage or wear. Additionally, it is recommended to check the connections and wiring periodically to ensure they are secure. Overall, solar cells are known for their durability and low maintenance needs.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords