• High Efficiency Discount Satellite Solar Cells System 1
  • High Efficiency Discount Satellite Solar Cells System 2
  • High Efficiency Discount Satellite Solar Cells System 3
  • High Efficiency Discount Satellite Solar Cells System 4
High Efficiency Discount Satellite Solar Cells

High Efficiency Discount Satellite Solar Cells

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
500 pc
Supply Capability:
20000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Size:156*156±0.5mmMax. Power:3.99wProduct:damaged solar cells
Pmp:3.99wVmp:0.516vImp:7.731A
Voc:0.621vIsc:8.262AEfficiency:16.25-16.50%
Thickness:190±20umFormat:156*156±0.5mmFF:77.77%
Packaging & Delivery
Packaging Detail:Original Package, 100pcs in one boxes, 10boxes in one carton
Delivery Detail:1~2days
Specifications
damaged solar cells
solar cells in stock with immediate delivery with big quantity, all range cells avaiable, poly

Manufacturer     

1,Components,ultra-white Executed tempered glass+PVB+cell+PVB+tempered glass
Glass+PVB+Cell+PVB+Glass
2,Components with ultra-white Executed tempered glass+PVB+cell+PVB+tempered glass+of PVB+tempered glass
Glass+PVB+Cell+PVB+Glass+PVB+Glass

 

Quality and Safety

 

1.Rigorous quality control meeting the highest international standards

 

2.High-transmissivity low-iron tempered glass, strong aluminium frame

 

3.Using UV-resistant silicon

 

4.ISO 9001:2008 and ISO 14001:2004

 

5.IEC61215, IEC61730, Safety Class in conformity to CE

 

Features

 

 1.High conversion efficiencies resulting in superior power output performance.

 2.Outstanding power output even in low light or high temperature conditions

 3.Optimized design for ease of soldering and lamination

 4.Long-term stability,reliability and performance

 

Warranties

 

1.10 years limited product warranty

 

2.15 years at 90% of the minimal rated power output

 

3.25 years at 80% of the minimal rated power output

 

Format:        156mm x 156mm

Thickness:    190um+-20um

Front(-):        1.7mm bus bars(silver),blue anti-reflecting coating(silicon nirtride)

back(+):        3mm wide soldering pads(silver) back surface field(aluminium) 

 

Size156mm x156mm ±0.5mm
Thickness190um ± 20um
Front surface(-)1.7mm bus bars(silver), blue anti-reflecting coating(Silicon nitride)
Back surface (+)3mm wide soldering pads(silver) back surface field(Aluminum)
TkVoltage-0.351%/K
TkCurrent+0.035%/K
TkPower-0.47%/K
Efficiency(%)Pmp(W)Vmp(V)Imp(A)Voc(V)Isc(A)FF(%)
16.25-16.503.990.5167.7310.6218.26277.77
16.00-16.253.920.5127.660.6168.19577.68
15.75-16.003.860.5097.5840.6138.13577.43
15.50-15.753.80.5057.5250.6118.0877.04
15.25-15.503.740.5027.4580.6098.05376.2
15.00-15.253.680.57.3650.6098.03875.12
14.75-15.003.620.4987.2710.6078.04574.23
14.50-14.753.560.4977.160.6048.0473.3
14.25-14.503.50.4947.0910.6038.0871.84
 14.00-14.253.440.4946.960.6018.06570.91

 

solar cell Pic. and drawing:

 

 

High Quality Damaged Solar Cells With Low Price


 

Benefits of Solar Power:

Now is a great time to go solar and harvest the power of the sun. Here is our top ten list of the benefits to installing solar power:

1, When installed, solar energy is free – no resources are consumed
2, Help to lessen our dependence on heavily polluting coal power stations
3, Fossil fuels can't last forever, future generations will appreciate the effort
4, You are gaining energy independence - add battery backup power for even greater energy security
5, The cost of electricity is only going to rise – insure against that rising cost
6, Quality solar power and water adds value and appeal to your home
7, Solar PV systems are easily upgraded in future - aim to make your house a net energy producer!
8, Solar panels offer a long lifetime of low maintenance service, maybe 30-40 years
9, Your friends will think you're great!
10, You'll feel great for doing your bit for the environment!

FAQ

1, What’s price per product ?

A: It’s depends on the quantity, delivery date and payment terms of the order. We can talk further about the detail price issue. Our products is high quality with lower price level.

2, How to make payment?

We accept T/T or L/C.

3, What is your lead time?

Generally 1-5 weeks depends on the order quantity and your specific requirements.

4, Can you do OEM for us?

Yes, we can.

5, How do you pack your products?

We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

 

Some basic information about solar cell

Solar cells are devices which convert solar light energy directly into electricity and function by the photovoltaic effect.  Photo- means light and -voltaic means electrical current or electricity  (light-electricity).  A solar cell provides direct current (DC) electricity that can be used to power DC motors and light bulbs among other things.  Solar cells can even be used to charge rechargeable batteries so that electricity can be stored for later use when the sun is not available. The fully charged batteries are portable energy that can be used whenever and wherever they are needed.

Solar cells provide DC electricity similar to batteries however, batteries differ because they operate through a process known as an electrochemical reaction.  This process will provide an electrical current (electro-) from a chemical reaction (-chemical) that occurs inside the battery.  When you hook up a motor to the battery, also known as a load, the reaction begins and electrons flow as shown in the picture: "Battery Circuit".  Direct current (DC electricity) is different from the alternating current (AC electricity) that is used to power the TV, refrigerator, and other appliances in your home however, DC can be converted to AC when needed.

Battery Circuit (large image)

Solar Cells With High Efficiecy with Discount

Solar cells produce DC electricity from light.  Sunlight contains packets of energy called photons that can be converted directly into electrical energy.  You can’t see the photons but they hit the cell and produce free electrons that move through the wires and cause an electrical current as shown in the picture: "Solar Cell Circuit".  The electrical current is the electricity that powers the motor.  Although you can't see the photons you can see the light and you can assume that the amount of photons hitting your solar cell is related to the amount of light hitting your solar cell.  A greater amount of light available means a greater amount of photons are hitting your solar cell and the more power you get from it.

Main technical parameters about solar cells

Cell Thickness

An optimum silicon solar cell with light trapping and very good surface passivation is about 100 µm thick. However, thickness between 200 and 500µm are typically used, partly for practical issues such as making and handling thin wafers, and partly for surface passivation reasons.

Doping of Base

A higher base doping leads to a higher Voc and lower resistance, but higher levels of doping result in damage to the crystal.

Reflection Control
(front surface typically textured)

The front surface is textured to increase the amount of light coupled into the cell.

Emitter Dopant

N-type silicon has a higher surface quality than p-type silicon so it is placed at the front of the cell where most of the light is absorbed. Thus the top of the cell is the negative terminal and the rear of the cell is the positive terminal.

Emitter Thickness

A large fraction of light is absorbed close to the front surface. By making the front layer very thin, a large fraction of the carriers generated by the incoming light are created within a diffusion length of the p-n junction.

Doping Level of Emitter

The front junction is doped to a level sufficient to conduct away the generated electricity without resistive loses. However, excessive levels of doping reduces the material's quality to the extent that carriers recombine before reaching the junction.

Grid Pattern.

The resistivity of silicon is too high to conduct away all the current generated, so a lower resistivity metal grid is placed on the surface to conduct away the current. The metal grid shades the cell from the incoming light so there is a compromise between light collection and resistance of the metal grid.

Rear Contact.

The rear contact is much less important than the front contact since it is much further away from the junction and does not need to be transparent. The design of the rear contact is becoming increasingly important as overall efficiency increases and the cells become thinner.

 

Q:Can solar cells be used to power remote oil and gas monitoring systems?
Yes, solar cells can be used to power remote oil and gas monitoring systems. Solar panels can convert sunlight into electricity, providing a reliable and sustainable energy source for these monitoring systems, especially in remote areas where access to traditional power grids may be limited or non-existent.
Q:What is the role of tracking systems in maximizing solar cell efficiency?
Tracking systems play a crucial role in maximizing solar cell efficiency by continuously adjusting the position of solar panels to optimize their exposure to sunlight. These systems enable solar panels to track and follow the sun's path throughout the day, ensuring that they are always facing directly towards the sun. By doing so, tracking systems can enhance the amount of sunlight captured by solar cells, resulting in increased energy production and overall efficiency.
Q:What is the role of solar cells in powering data centers?
Solar cells play a crucial role in powering data centers by harnessing the energy from sunlight and converting it into electricity. By installing solar panels on the roofs or surrounding areas of data centers, these cells generate clean and renewable energy to meet a portion of the center's power needs. This reduces reliance on traditional energy sources and helps data centers become more sustainable and environmentally friendly.
Q:What is the impact of maintenance and cleaning on solar cell performance?
Maintenance and cleaning play a crucial role in maintaining optimal solar cell performance. Regular maintenance, such as inspecting and repairing any damages, ensures that the cells are functioning efficiently and effectively. Additionally, cleaning the solar panels helps remove any dirt, dust, or debris that can accumulate and hinder sunlight absorption. By keeping the panels clean and well-maintained, solar cell performance is maximized, resulting in higher energy production and increased overall efficiency.
Q:Can solar cells be used in airports?
Yes, solar cells can be used in airports. In fact, many airports around the world have already started using solar panels to generate clean and renewable energy. These solar cells are typically installed on rooftops, canopies, or open areas near the airport to harness sunlight and convert it into electricity. This helps airports reduce their carbon footprint, lower energy costs, and contribute towards sustainability goals.
Q:Can solar cells be used to power remote disaster response systems?
Yes, solar cells can be used to power remote disaster response systems. Solar cells are a reliable and sustainable source of energy, especially in areas where access to electricity may be limited or disrupted due to natural disasters. By harnessing the sun's energy, solar cells can provide power for various critical systems such as communication equipment, lighting, medical devices, and water purification systems in remote disaster-stricken areas. This helps in facilitating efficient and effective disaster response efforts, enabling responders to provide crucial aid and support to affected communities.
Q:Can solar cells be used underwater?
No, solar cells cannot be used underwater as they rely on sunlight to generate electricity. Water blocks sunlight and prevents the solar cells from functioning effectively.
Q:Can solar cells be used in powering drones?
Yes, solar cells can be used in powering drones. Solar panels can be mounted on the surface of drones to convert sunlight into electrical energy, which can then be used to power the drone's motors and other electronic components. This enables longer flight times and reduces the reliance on traditional battery power. However, the efficiency of solar cells and limited surface area on drones may present challenges in generating sufficient power for certain drone applications.
Q:How do solar cells work to become the solar energy?
The solar cells work by using the solar power from sunshine to generate the energy such as electricity to become solar energy.
Q:Which Solar Panel Type is best? Polycrystalline panel or PV Module Monocrystalline Solar cell panel, or thin film?
PV Module Monocrystalline Solar cell panels is most efficient since they are made from the highest-grade silicon.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords