Plywood formwork system and scaffolding system

Ref Price:
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
50 g/m²
Supply Capability:
1000 g/m²/month
  • OKorder Service Pledge
  • Quality Product
  • Order Online Tracking
  • Timely Delivery
  • OKorder Financial Service
  • Credit Rating
  • Credit Services
  • Credit Purchasing

Add to My Favorites

Follow us:

Plywood --- make perfect concrete surface


WISA-Form Birch is a coated special plywood using in the formwork systems where high

requirements are set on the concrete surface and the times of reuses.


With CNBM timber beam & WISA plywood, the formwork is low weight but high load capacity, it is

widely used in construction.


Characteristics:


◆ Component with high standardization.

◆ Assembling in site, flexible application.

◆ Light weight, easy transportation and storage.



Q:
Concrete stairs can indeed be constructed using steel formwork. This choice is highly favored due to the strength and durability of steel formwork. Its stable and rigid framework is capable of withstanding the weight and pressure of the concrete throughout the pouring and curing process. Moreover, steel formwork enables precise shaping of the stairs, guaranteeing a seamless and consistent final result. Additionally, its reusability makes it a cost-effective and efficient option for various construction projects. Nevertheless, it is crucial to install and brace the steel formwork correctly to ensure the safety and stability of the concrete stairs.
Q:
The deflection limits of steel formwork systems can vary depending on various factors, such as the project's specific design and application requirements. However, there are commonly followed general guidelines. In most cases, the deflection limits for steel formwork systems are determined based on the span length and the applied load. Typically, deflection limits are restricted to L/360 or L/240, where L represents the span length of the formwork. For instance, if the formwork's span length is 10 feet, the deflection limit would be L/360, which is approximately 0.028 feet or 0.34 inches. This means that the maximum allowable deflection for this formwork system would be 0.34 inches, ensuring stability and minimal deformation under the load. It should be noted that these deflection limits may be adjusted according to project requirements or industry standards. In high-rise construction projects, stricter deflection limits may be enforced to ensure the formwork system's structural integrity and overall safety. Ultimately, careful consideration and evaluation of deflection limits are necessary during the design and construction process of steel formwork systems. Consulting a structural engineer or referring to relevant industry standards can provide more accurate and specific deflection limits for a given system.
Q:All I know is that prices are different
At the same time, the steel formwork concrete formwork, the concrete surface is smooth and beautiful, is a good way to die in the process of transport is not easy deformation.
Q:
Yes, steel formwork can be used for both cast-in-place and precast concrete construction. Steel formwork is versatile and durable, making it suitable for various construction methods. It can be easily assembled and disassembled, allowing for efficient use in both cast-in-place and precast concrete projects.
Q:
Yes, there are several specific considerations for using steel formwork in areas with limited space. Firstly, the dimensions of the steel formwork system should be carefully chosen to ensure that it can fit into the available space. This includes considering the height, width, and depth of the formwork components, as well as any necessary clearances for movement and installation. Secondly, the assembly and disassembly of the steel formwork system should be carefully planned to minimize the space required. This may involve using smaller formwork panels or modular systems that can be easily transported and maneuvered in tight spaces. Additionally, the sequencing of formwork removal should be considered to ensure that there is enough space for workers and equipment to safely access the area. Thirdly, the storage of steel formwork components when not in use should be taken into account. In areas with limited space, it may be necessary to stack the formwork panels vertically or utilize compact storage solutions to maximize space efficiency. Lastly, the accessibility of the construction site should be considered. In areas with limited space, it may be challenging to transport and deliver the steel formwork components. It is important to evaluate the availability of access roads, parking areas, and equipment staging areas to ensure that the steel formwork can be safely and efficiently delivered to the construction site. Overall, using steel formwork in areas with limited space requires careful planning and consideration of the dimensions, assembly, disassembly, storage, and site accessibility. By addressing these specific considerations, it is possible to effectively utilize steel formwork systems in tight spaces while ensuring the safety and efficiency of the construction process.
Q:
Yes, steel formwork does require special equipment for installation. The installation process involves assembling the steel panels into the desired shape and securing them together. This typically requires the use of specialized tools such as spanners, hammers, or hydraulic jacks to ensure proper alignment and tightness of the formwork. In addition, heavy-duty lifting equipment such as cranes or forklifts may be necessary to move and position the steel formwork panels safely. The use of special equipment ensures that the installation is done accurately and efficiently, resulting in a sturdy and well-constructed formwork system.
Q:
The overall durability of a structure can be greatly influenced by the use of steel formwork. Steel, known for its strength and durability, is an ideal material for formwork. One of the main ways in which steel formwork impacts the durability of a structure is by its ability to withstand the forces and pressures exerted during construction. Steel formwork provides exceptional support and stability to the concrete during pouring and curing, ensuring that it maintains its shape and strength. This helps prevent any deformation or cracking that could compromise the overall durability of the structure. Moreover, steel formwork is highly resistant to wear and tear, which is crucial for projects involving multiple concrete pours. Unlike other formwork materials like timber, steel formwork does not warp, shrink, or expand due to moisture or temperature changes. This allows for multiple uses and reuses, reducing the need for frequent replacements and ultimately increasing the lifespan of the structure. Additionally, steel formwork offers superior protection against environmental factors such as corrosion and fire. Steel naturally resists rust and decay, significantly extending the lifespan of the formwork and consequently the structure itself. Furthermore, steel formwork provides higher fire resistance compared to other materials, reducing the risk of structural damage and enhancing the overall durability of the building. In conclusion, the use of steel formwork has a positive impact on the overall durability of a structure. Its excellent support, stability, and protection against various forces and environmental factors make it a reliable choice for construction projects, ensuring the longevity and durability of the structure.
Q:
Yes, steel formwork can be customized to meet different project requirements. Steel is a versatile material that can be easily shaped and modified to fit specific project needs. It can be cut, welded, and adjusted to create formwork in various shapes and sizes, allowing it to be tailored to different construction projects. Additionally, steel formwork can be reused multiple times, making it a cost-effective and sustainable solution for customized construction requirements.
Q:
The inherent properties and characteristics of steel formwork make it a valuable asset in enhancing the fire safety of a building. Firstly, steel formwork is renowned for its exceptional fire resistance. Its high melting point and resistance to ignition and burning make it a suitable choice for construction in fire-prone areas. In case of a fire, steel formwork remains structurally stable, serving as a vital barrier that contains the fire and prevents its spread to other sections of the building. This is particularly crucial in tall buildings where fire safety is of utmost importance. Furthermore, steel formwork is non-combustible, thereby minimizing the release of flammable gases and toxic fumes when exposed to fire. This is essential for the safety of occupants as smoke inhalation and toxic gases are leading causes of casualties in fire incidents. The utilization of steel formwork reduces the risk of smoke and toxic gases permeating throughout the building, allowing occupants more time to evacuate safely. Moreover, steel formwork is a durable and robust material capable of withstanding the impact of fire while retaining its structural integrity. This is vital in ensuring the stability of the building during a fire, preventing collapse, and reducing the likelihood of injuries or fatalities. Steel formwork can also resist the effects of high temperatures, such as thermal expansion, further contributing to the fire safety of the building. In conclusion, steel formwork plays a crucial role in enhancing the overall fire safety of a building. Its high fire resistance, non-combustible nature, and durability help contain fires, minimize the spread of smoke and toxic gases, and maintain the structural integrity of the building. By incorporating steel formwork into construction, the risk of fire-related incidents and their potential consequences can be significantly reduced, ensuring the safety of occupants and property.
Q:
Construction projects utilize a variety of steel formwork clamps and connectors, each serving a crucial role in maintaining the stability of the formwork during concrete casting. Here are some commonly used types: 1. Wedge clamps: These clamps effectively secure formwork panels by utilizing a wedge-shaped piece. They are popular for temporary formwork due to their easy installation and removal. 2. Rapid clamps: Designed for quick installation and removal, these clamps have a spring-loaded mechanism that allows for easy adjustment and tightening. They are commonly employed in time-sensitive situations like high-rise construction. 3. Scaffold clamps: Used to connect formwork to scaffolding systems, these clamps ensure a secure and stable connection between the two components during construction. 4. Column clamps: Specifically designed for connecting formwork panels around columns or pillars, these clamps come in various sizes to accommodate different column diameters. They provide a strong and stable connection. 5. Corner clamps: These clamps are employed to connect formwork panels at corners, ensuring a tight fit and preventing any gaps. They offer adjustability, allowing for flexibility in formwork design and easy alignment of panels. 6. Beam clamps: These clamps secure formwork panels to horizontal beams or joists, distributing the load evenly and ensuring overall stability of the formwork system. 7. Pin and wedge connectors: These connectors consist of steel pins and wedges that join formwork panels together. The pins are inserted into pre-drilled holes, and the wedges are hammered in to create a tight connection. They provide a reliable and durable solution. 8. Tie rods and wing nuts: These components work in conjunction with clamps to provide additional support and reinforcement to the formwork system. Tie rods, threaded steel rods, are inserted through the formwork panels and secured with wing nuts, creating a strong and rigid connection. It is important to consider that the specific clamps and connectors used may vary depending on project requirements and the formwork system in use. Consulting a structural engineer or formwork supplier is advisable to determine the most suitable clamps and connectors for a particular construction project.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request