• Malleable Iron Pipe Fitting Hot Dipped Galvanized System 1
  • Malleable Iron Pipe Fitting Hot Dipped Galvanized System 2
  • Malleable Iron Pipe Fitting Hot Dipped Galvanized System 3
Malleable Iron Pipe Fitting Hot Dipped Galvanized

Malleable Iron Pipe Fitting Hot Dipped Galvanized

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
10 m.t.
Supply Capability:
5000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing


1. hydraulic hose crimping machine in Electrical equipment&supplies

Specifications

High pressure hose to the winding wire matrix, skin coated refractory coating layer steel braided flame retardant layer 

APPLICATIONS:It is mainly used in high temperature surroundings and in conditions having heat source or heat radiation source,such as oil field well-control,metal smelt,and chemical industry.

Inner Diameter of Hose mm

Inside Diameter
(mm)

Reinforcement Diameter (mm)

Outside Diameter (mm)

Work Pressure (MPa)

Proof Pressure (MPa)

Minimum Explosive Pressure (MPa)

Minimum Bending Radius mm

Refractory °C

Mpa

Psi

MPa

Psi

Mpa

Psi

φ13(1/2")

13±0.5

22.2±0.8

44±1.06

43

6230

64.5

9435

86

12460

230

750

φ16(5/8")

16±0.5

26±0.8

47±1.5

38

5506

57

8259

76

11012

260

750

φ19(3/4")

19±0.5

30±0.8

52±1.5

34.5

4999

51.75

7498

69

9998

300

750

φ25(1")

25±0.8

36±0.8

59±1.5

27.5

3984

41.25

5976

55

7968

360

750

φ32(5/4")

32±0.8

44±0.8

69±2.0

20.5

2970

30.75

4455

41

5940

470

750

φ38(3/2")

38±1.0

76±2.0

87.2±5.1

17

2463

25.5

3694

34

4926

570

750

φ51(2")

51±1.0

91±2.0

100.7±5.1

17

2463

25.5

3695

34

4926

740

750

 

 

2. Antiflaming,fire-resistance rubber hose assembly

Specifications

High pressure hose to the winding wire matrix, skin coated refractory coating layer steel braided flame retardant layer and laye 

APPLICATIONS:It is mainly used in high temperature surroundings and in conditions having heat source or heat radiation source,such as oil field well-control,metal smelts,and chemical industry

Inner Diameter of Hose mm

Inside Diameter
(mm)

Reinforcement Diameter (mm)

Outside Diameter (mm)

Work Pressure (MPa)

Proof Pressure (MPa)

Minimum Explosive Pressure (MPa)

Minimum Bending Radius mm

Refractory °C

Mpa

Psi

MPa

Psi

Mpa

Psi

φ13(1/2")

13±0.5

22.2±0.8

44±1.06

43

6230

64.5

9435

86

12460

230

750

φ16(5/8")

16±0.5

26±0.8

47±1.5

38

5506

57

8259

76

11012

260

750

φ19(3/4")

19±0.5

30±0.8

52±1.5

34.5

4999

51.75

7498

69

9998

300

750

φ25(1")

25±0.8

36±0.8

59±1.5

27.5

3984

41.25

5976

55

7968

360

750

φ32(5/4")

32±0.8

44±0.8

69±2.0

20.5

2970

30.75

4455

41

5940

470

750

φ38(3/2")

38±1.0

76±2.0

87.2±5.1

17

2463

25.5

3694

34

4926

570

750

φ51(2")

51±1.0

91±2.0

100.7±5.1

17

2463

25.5

3695

34

4926

740

750

 

3. hydraulic hose Universal Wire-braided DN6

Quick Details

·         Place of Origin: Hebei, China (Mainland)

·         Brand Name: CMAX/CNBM

·         Model Number: GB/T3683-92

Packaging & Delivery

Packaging Details:

hydraulic hose is wrapped with fabrics

Delivery Detail:

80000meters/30days

Specifications

Universal Wire-braided Hydraulic Hose, Q/FLT01-AStandard GB/T3683-92, Temperature range: -40 to +100 

Universal Wire-braided Hydraulic Hose 
Q/FLT01-AStandard GB/T3683-92 
Tube: oil resistant synthetic rubber
Reinforcement: 1 W/B (one high tensile steel wire braid)
Cover: abrasion and weather resistant synthetic rubber 
Temperature range: -40 to +100.

 

4. Drilling Rubber Hose

Quick Details

·         Place of Origin: Hebei, China (Mainland)

·         Brand Name: CMAX/CNBM

Packaging & Delivery

Packaging Details:

Package: plastic films, then wrapped with fabrics

Delivery Detail:

According to the Quantity

Specifications

Drilling hose 

DN

 

Hose I.D

Wire O.D

 

Hose O.D

 

Working Pressure

Burst Pressure

Minimum Bend Radius

Weight

Length

inch

mm

mm

 

mm

MPa

psi

MPa

psi

mm

kg/m

metres

5

3/16

4.8

9.5

11.8

25.0

3630

100.0

14280

89

0.19

50/100

6

1/4

6.4

11.1

13.4

22.5

3270

90.0

12840

102

0.21

50/100

8

5/16

7.9

12.7

15.0

21.5

3120

85.0

12280

114

0.24

50/100

10

3/8

9.5

15.1

17.4

18.0

2615

72.0

10280

127

0.33

50/100

13

1/2

12.7

18.3

20.6

16.0

2320

64.0

9180

178

0.41

50/100

16

5/8

15.9

21.4

23.7

13.0

1890

52.0

7420

203

0.45

50/100

19

3/4

19.0

25.4

27.7

10.5

1530

42.0

6000

241

0.58

50/100

25

1

25.4

33.3

35.6

8.8

1280

35.0

5020

305

0.88

50

32

11/4

31.8

40.5

43.5

6.3

920

25.0

3600

419

1.23

20/40

38

11/2

38.1

46.8

50.6

5.0

730

20.0

2860

508

1.51

20/40

51

2

50.8

60.2

64.0

4.0

580

16.0

2280

 

5. Concrete pump rubber hose

Quick Details

·         Place of Origin: Hebei, China (Mainland)

·         Brand Name: CMAX/CNBM

Packaging & Delivery

Packaging Details:

Package: plastic films, then wrapped with fabrics

Delivery Detail:

According to the Quantity

Specifications

Specifications 
High Quality Concrete Pump Delivery Rubber Hose 
1.high quality 
2.ISO9001:2008 
3.reasonable price 

 

1. Material: Black NR and BR  synthetic rubber .

 

2.Reinforcement:Spiral textile/steel wire.

 

3. Widely application: Schwing PM SANY Zoomlion and other brand concrete pump trucks.

 

4.Cover:Abrasion resistantant,heat and ozone resistant.

 

5.Inside diameter:50-152mm

 

6.Working pressure:8.5 MPA.

 

7.Detailed specification:

No

Description

ID

OD

Plies

Working Pressure

Burst Pressure

Weight

1

2 inch

50mm

70mm

2

8.5MPA 1200PSI

20MPA 3000PSI

3.5kgs

2

2.5 inch

63mm

88mm

2

8.5MPA 1200PSI

20MPA 3000PSI

4.9kgs

3

3 inch

76mm

102mm

2

8.5MPA 1200PSI

20MPA 3000PSI

6.5kgs

4

4 inch

100mm

130mm

2

8.5MPA 1200PSI

20MPA 3000PSI

9.3kgs

5

5 inch

125mm

155mm

2 or 4

8.5MPA 1200PSI

20MPA 3000PSI

10.9kgs

6

6 inch

152mm

184mm

2

8.5MPA 1200PSI

20MPA 3000PSI

13.3kgs

 

Malleable Iron Pipe Fitting Hot Dipped Galvanized

Malleable Iron Pipe Fitting Hot Dipped Galvanized


Q:Are ductile iron pipes suitable for potable water distribution systems?
Ductile iron pipes are well-suited for the distribution of drinking water in potable water systems. Ductile iron, a form of cast iron, is renowned for its strength and durability, making it an ideal choice for transporting drinking water. These pipes possess corrosion resistance, a crucial factor in preserving the safety and quality of potable water. Moreover, their smooth inner surface helps prevent the accumulation of sediments and biofilms that can negatively impact water quality. Furthermore, they can withstand high pressure and temperature fluctuations, rendering them suitable for diverse potable water distribution systems. In summary, ductile iron pipes are a dependable and widely employed solution for ensuring the provision of safe and uncontaminated drinking water to communities.
Q:Can ductile iron pipe be used for stormwater management systems?
Yes, ductile iron pipe can be used for stormwater management systems. Ductile iron pipe is known for its strength, durability, and ability to withstand external loads and harsh environmental conditions, making it suitable for carrying stormwater and managing drainage systems effectively.
Q:What is the acceptance of cast iron pipe material?
Specific acceptance, first of all in line with national standards, followed by the provisions of the contract, and then the project requirements. General contract and drawings will have the requirements and standards of pipe. I hope I can help you.
Q:Are ductile iron pipes resistant to sulfuric acid corrosion?
Generally, ductile iron pipes exhibit resistance to corrosion caused by sulfuric acid. Ductile iron, known for its strength and durability, contains a substantial amount of iron, which renders it less vulnerable to the harmful effects of sulfuric acid compared to materials like cast iron or steel. Nevertheless, it is crucial to consider that the degree of resistance can vary depending on factors such as the concentration and temperature of the sulfuric acid, as well as the duration of exposure. In scenarios where the acid is highly concentrated or the temperature is elevated, additional precautions may be required to guarantee long-term protection against sulfuric acid corrosion. These measures could include lining the pipes with suitable materials or employing corrosion inhibitors.
Q:Are ductile iron pipes resistant to external loads?
Generally, external loads pose little challenge to ductile iron pipes. Ductile iron, a variant of cast iron, undergoes treatment with magnesium and cerium additives to enhance its flexibility and durability. As a result, these pipes possess the ability to endure substantial external pressure and stress without succumbing to cracks or fractures. Ductile iron pipes find extensive implementation in scenarios where heavy loads are anticipated, including underground water distribution systems, sewer lines, and industrial pipelines. Their exceptional resistance to external loads has been thoroughly validated, establishing them as a dependable option for diverse infrastructure ventures.
Q:Can ductile iron pipes be used in high-temperature applications?
Yes, ductile iron pipes can be used in high-temperature applications. Ductile iron has excellent heat resistance properties, with a maximum recommended operating temperature of around 450 degrees Fahrenheit. This makes it suitable for a wide range of industrial and commercial applications where high temperatures are involved, including steam, hot water, and thermal oil systems.
Q:What are the common causes of failure in ductile iron pipes?
There are several common causes of failure in ductile iron pipes. One major cause is corrosion. Over time, the exposure to water, soil, and other environmental factors can lead to the formation of rust and corrosion on the pipe's surface. This can weaken the structural integrity of the pipe and eventually lead to failure. Another common cause is improper installation or handling. If the pipes are not installed correctly or if they are mishandled during transportation or installation, it can result in cracks, fractures, or other physical damage. These defects can compromise the functionality of the pipe and contribute to its failure. Inadequate design is another factor that can lead to failure. If the pipe is not designed to withstand the anticipated loads, pressures, or environmental conditions, it can become susceptible to premature failure. The pipe's material properties, wall thickness, and diameter must be carefully considered during the design process to ensure it can handle the expected demands. Poor maintenance and lack of timely repairs can also contribute to failure. Regular inspections, maintenance, and prompt repairs are necessary to identify and address any issues before they escalate. Failure to do so can result in the gradual deterioration of the pipe, making it more prone to failure. Lastly, external factors such as soil movement, seismic activity, or excessive traffic loads can also cause failure in ductile iron pipes. These external forces can exert stress on the pipe, leading to cracks, fractures, or even complete failure. To prevent failure in ductile iron pipes, it is essential to employ proper corrosion protection techniques, follow correct installation procedures, ensure adequate design considerations, implement regular maintenance and repair programs, and account for external factors during the planning and installation process.
Q:What is the maximum allowable joint deflection for ductile iron pipes?
The maximum allowable joint deflection for ductile iron pipes varies based on the specific design and application requirements. However, it is generally recommended to limit joint deflection to a maximum of 5% of the pipe diameter to ensure the structural integrity and longevity of the pipeline.
Q:How do ductile iron pipes compare to PVC pipes?
Plumbing and water distribution systems commonly utilize ductile iron pipes and PVC pipes. When comparing these materials, various factors should be taken into account. Strength and Durability: Ductile iron pipes are renowned for their exceptional strength and durability. They can withstand high pressure and heavy loads, making them suitable for underground and high-traffic areas. Conversely, PVC pipes are less sturdy and more prone to cracking under extreme conditions. However, PVC pipes have the advantage of being corrosion-resistant and do not rust, which is beneficial in certain environments. Installation and Maintenance: Ductile iron pipes are heavier and require specialized equipment and skilled labor for proper installation. In contrast, PVC pipes are lightweight and easy to handle, making installation simpler and quicker. Additionally, PVC pipes require less maintenance as they do not corrode or develop mineral deposits over time, unlike ductile iron pipes which may need regular cleaning and maintenance to prevent rust and sediment buildup. Cost: PVC pipes generally have a lower cost compared to ductile iron pipes. The lower material and installation expenses associated with PVC pipes make them a popular choice for budget-friendly residential and commercial plumbing projects. Ductile iron pipes, while offering superior strength and durability, tend to be more expensive due to the higher cost of materials, specialized installation requirements, and additional maintenance expenses. Environmental Impact: PVC pipes are made from non-renewable resources and can have a negative environmental impact during production and disposal. On the other hand, ductile iron pipes are made from recycled iron and have a longer lifespan, reducing the need for replacement and minimizing waste. However, it is important to note that PVC pipes can be recycled, and many manufacturers have implemented sustainable practices to minimize their environmental footprint. In conclusion, ductile iron pipes and PVC pipes possess distinct characteristics that make them suitable for different applications. Ductile iron pipes excel in strength and durability, making them ideal for heavy-duty applications, while PVC pipes offer cost-effectiveness, easy installation, and corrosion resistance. Ultimately, the choice between the two materials depends on the specific requirements, budget, and environmental considerations of the project.
Q:What is the average weight of ductile iron pipes?
The average weight of ductile iron pipes can vary depending on the specific dimensions and specifications of the pipe. However, as a general guideline, ductile iron pipes typically range in weight from around 50 pounds per foot to 200 pounds per foot. The weight of a ductile iron pipe is influenced by factors such as the pipe's diameter, wall thickness, and length. It is important to note that these are average weights, and the actual weight of a specific ductile iron pipe may vary. To determine the exact weight of a ductile iron pipe, it is advisable to refer to the manufacturer's specifications or consult engineering guidelines.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords