• Grade JIS G3135-SPFC 340 Galvanized Steel Coil System 1
  • Grade JIS G3135-SPFC 340 Galvanized Steel Coil System 2
  • Grade JIS G3135-SPFC 340 Galvanized Steel Coil System 3
  • Grade JIS G3135-SPFC 340 Galvanized Steel Coil System 4
  • Grade JIS G3135-SPFC 340 Galvanized Steel Coil System 5
  • Grade JIS G3135-SPFC 340 Galvanized Steel Coil System 6
Grade JIS G3135-SPFC 340 Galvanized Steel Coil

Grade JIS G3135-SPFC 340 Galvanized Steel Coil

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Alloy Steel,Stainless Steel,Deformed Steel,Gear Steel,Bearing Steel,Spring Steel
Shape:
Steel Billets,Steel Round Bar,Steel Angle,Steel Square Bar,Steel Flat Bar,Steel Wire Rod,Steel Sheet,Steel Coil
Technique:
Hot Rolled,Spring,EFW,Extruded,Saw,Forged,ERW,Cold Drawn,Cold Rolled
Surface Treatment:
Bright,Black,PVDF Coated,Polished,Chromed Passivation,Dry,Oiled,Color Coated,Copper Coated,Coated,Galvanized
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Thickness:
0.13-5.0mm
Width:
600-1570mm
Length:
in coils
Outer Diameter:
in coils
Net Weight:
10m.t.
Packaging:
seaworthy packaging

Grade JIS G3135-SPFC 340 Galvanized Steel Coil

 Specification of Grade JIS G3135-SPFC 340 Galvanized Steel Coil

1. Galvanized Steel Coil    

    (1) Width: 600-1570mm

    (2) Thickness: 0.13-5.0mm

    (3) Grade: JIS G3302-SGCC-SGC570, SGCH (full hard-G550), SGHC-SGH540

                          EN10346-DX51D+Z, DX53D+Z, S250GD-S550GD

                         ASTM A653-CS-B, SS255-SS550

    (4) Zinc Coating: Z40g/m2~Z500g/m2 (both side total coating thickness)

2. Galvalume Steel Coil 

    (1) Width: 600~1500mm

    (2) Thickness: 0.15~2.30mm

    (3) Grade: JIS G3321-SGLCC, SGLC400-570, (G550)

                       EN10346-DX51D+AZ, DX53D+AZ, S250-S550

                      ASTM A792M CS-B, SS255-SS550

    (4) AZ Coating: AZ50~AZ185g/m2

3. Prepainted Galvanized Steel Coil (PPGI) 

    (1) Width: 600~1250mm

    (2) Thickness: 0.19~1.50mm

    (3) Grade: JIS G3312-CGCC, CGC340-570, (G550)

                      ASTM A755M CS-B, SS255-SS550

    (4) Zinc Coating: Z40g/m2~Z500g/m2 (both side total coating thickness)

4. Prepainted Galvanized Steel Coil (PPGL)

    (1) Width: 600~1250mm

    (2) Thickness: 0.20~1.50mm

    (3) Grade: JIS G3322-CGLCC, CGLC340-570, (G550)

                      ASTM A755M CS-B, SS255-SS550

    (4) AZ Coating: AZ50~AZ185g/m2 (both side total coating thickness)

5. Cold Rolled Steel Coil (Soft) (for further information, pls click the product name)

    (1) Width: 600~1570mm

    (2) Thickness: 0.13~2.50mm

    (3) Grade: JIS G3141-SPCC-SD, SPCD-SD, SPEC-SD

                      JIS G3135-SPFC 340/390/440

                      EN10130-DC01, DC03, DC04

                      SAE1006, SAE1008

                      ASTM A424-TypeⅡ

6. Cold Rolled Steel Coil (Full Hard) (for further information, pls click the product name)

    (1) Width: 600~1570mm

    (2) Thickness: 0.13~2.50mm

    (3) Grade: JIS G3141-SPCC-1B, SPCC-1D

7. Hot Rolled Steel Coil 

    (1) Width: 1000~1524mm

    (2) Thickness: 1.20~16.5mm, other thickness can be negotiation

    (3) Grade: JIS G3101-SS400, JIS G3132-SPHT1/2/3, ASTM A36, Q195, Q235 etc.

 

Company Introduction of the Grade JIS G3135-SPFC 340 Galvanized Steel Coil

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

Grade JIS G3135-SPFC 340 Galvanized Steel Coil

Grade JIS G3135-SPFC 340 Galvanized Steel Coil

 

Packaging & Delivery of the Grade JIS G3135-SPFC 340 Galvanized Steel Coil

Packaging Detail

Sea worthy packing /as per customer's packing instruction

Delivery Detail

15 ~ 40 days after receiving the deposit

 

Products Show:

Grade JIS G3135-SPFC 340 Galvanized Steel Coil

FAQ:   

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok

Why  choose  us?

Chose happens because of quality, then price, We can give you both.

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

 

Where are your Market?

Covering more than 160 countries in the world

 

Q: How does special steel perform in terms of electrical resistivity?
Special steel typically has a relatively high electrical resistivity, which means it offers greater resistance to the flow of electric current compared to other materials. This property makes special steel useful in applications where low electrical conductivity is required, such as in electrical resistors or magnetic cores.
Q: What are the different testing methods used for special steel?
Some of the different testing methods used for special steel include hardness testing, tensile testing, impact testing, metallographic examination, ultrasonic testing, and magnetic particle testing.
Q: How does special steel contribute to the creep resistance of products?
Special steel contributes to the creep resistance of products by offering enhanced mechanical properties, such as high tensile strength and toughness, which help to resist deformation and damage over time. Additionally, the unique alloying elements and heat treatment processes used in special steel production further improve its resistance to creep, which is the gradual deformation occurring under prolonged exposure to high temperatures and constant stress. This makes special steel a reliable choice for applications where long-term structural integrity and durability are crucial, such as in high-temperature environments or load-bearing components.
Q: How does special steel perform in low-temperature environments?
Special steel performs exceptionally well in low-temperature environments. It exhibits excellent toughness, high strength, and remarkable resistance to brittle fracture, which makes it suitable for various applications in extreme cold conditions. Additionally, special steel maintains its mechanical properties even at sub-zero temperatures, ensuring reliability and durability in challenging environments.
Q: How is special steel used in the production of pressure vessels?
Special steel is used in the production of pressure vessels due to its unique properties that make it suitable for withstanding high pressure environments. Pressure vessels are containers designed to hold gases or liquids at a pressure significantly different from the surrounding atmosphere. These vessels are commonly used in industries such as oil and gas, chemical, and power generation. The use of special steel in pressure vessel production is crucial to ensure the safety and reliability of these containers. Special steels, such as carbon steels, stainless steels, and alloy steels, offer enhanced mechanical properties, high strength, and excellent corrosion resistance. These properties are essential for withstanding the extreme pressure conditions experienced by pressure vessels. One of the primary functions of special steel in pressure vessel production is to provide resistance against internal pressure. The steel needs to be able to withstand the force exerted by the contents of the vessel without deforming or rupturing. The high strength and toughness of special steels make them capable of handling these pressures, ensuring the integrity of the vessel and preventing catastrophic failures. Special steel also plays a vital role in maintaining the structural integrity of pressure vessels. These vessels are subjected to various external loads, such as wind, seismic forces, and thermal expansion. The superior mechanical properties of special steel enable it to bear these loads without significant deformation or failure, ensuring the structural stability of the pressure vessel. Furthermore, special steel's resistance to corrosion is essential in the production of pressure vessels. Pressure vessels often contain corrosive substances, and the corrosive environment can lead to the degradation of the material over time. Special steels, especially stainless steels, offer excellent resistance to corrosion, minimizing the risk of material deterioration and maintaining the vessel's longevity. In summary, special steel is used in the production of pressure vessels due to its high strength, toughness, and corrosion resistance. These properties enable the steel to withstand high pressure conditions, maintain structural integrity, and prevent corrosion-related failures. By utilizing special steel, pressure vessel manufacturers can ensure the safety, reliability, and longevity of these critical containers.
Q: What are the different corrosion testing methods used for special steel?
There are several corrosion testing methods used for special steel, including salt spray testing, electrochemical testing, immersion testing, and accelerated corrosion testing. These methods help to assess the corrosion resistance and durability of special steel in different environments and conditions.
Q: How does special steel contribute to the transportation industry?
Special steel contributes to the transportation industry by providing high-strength, lightweight, and corrosion-resistant materials for various applications. It is used in the manufacturing of automobile bodies, engine components, and structural parts, enabling vehicles to be more energy-efficient, durable, and safe. Additionally, special steel is utilized in the production of aircraft parts, railway tracks, and shipbuilding, enhancing the performance, reliability, and longevity of these modes of transportation.
Q: Can special steel be used in the computer manufacturing industry?
Yes, special steel can be used in the computer manufacturing industry. It is commonly used for various applications such as computer casings, hard drive components, and heat sinks due to its strength, durability, and thermal conductivity properties.
Q: How is ultra-high-strength steel used in the construction industry?
Ultra-high-strength steel is commonly used in the construction industry to enhance the structural integrity and resilience of buildings and infrastructure. Its exceptional strength-to-weight ratio allows for the creation of lighter and more durable structures. This steel variant is often employed in applications such as high-rise buildings, bridges, and offshore structures, where its superior strength properties provide increased safety and load-bearing capacity.
Q: What are the different methods of non-destructive testing for special steel?
There are several methods of non-destructive testing (NDT) that can be used to evaluate the quality and integrity of special steel without causing any damage. These methods include: 1. Ultrasonic Testing (UT): This method uses high-frequency sound waves to detect defects, such as cracks or voids, within the special steel. A transducer is used to emit sound waves into the material, and the reflections or echoes are analyzed to identify any anomalies. 2. Magnetic Particle Testing (MT): This technique is based on the principle of magnetic fields and is primarily used to detect surface or near-surface defects in special steel. A magnetic field is induced in the material, and magnetic particles are applied. Any discontinuities or defects will cause the particles to gather, forming visible indications. 3. Liquid Penetrant Testing (PT): This method involves applying a liquid dye or penetrant to the surface of the special steel. The penetrant is drawn into any surface defects through capillary action. After a certain period, excess penetrant is removed, and a developer is applied to make the indications visible. 4. Radiographic Testing (RT): This technique utilizes X-rays or gamma rays to inspect the internal structure of special steel. The material is exposed to radiation, and a film or digital detector captures the transmitted radiation. Any inconsistencies or defects within the material will be visible on the resulting image. 5. Eddy Current Testing (ECT): ECT is mainly used for detecting surface or near-surface defects in special steel. It works by inducing an alternating current into a coil, creating an electromagnetic field. Any variations in the material's electrical conductivity or magnetic permeability caused by defects will generate changes in the coil's impedance, which can be analyzed. 6. Visual Testing (VT): Although not a direct NDT method, visual inspection is often used as a preliminary step to identify surface defects or irregularities in special steel. This method involves a thorough visual examination of the material using appropriate lighting and magnification tools. These different methods of non-destructive testing for special steel provide valuable insights into the material's quality, helping ensure its structural integrity and reliability in various applications. The choice of method depends on factors such as the type of defect being sought, the location of the material, and the specific requirements of the industry or application involved.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords