• Grade DIN 20Cr4 CNBM Alloy Steel Round Bar Made in China System 1
  • Grade DIN 20Cr4 CNBM Alloy Steel Round Bar Made in China System 2
  • Grade DIN 20Cr4 CNBM Alloy Steel Round Bar Made in China System 3
  • Grade DIN 20Cr4 CNBM Alloy Steel Round Bar Made in China System 4
  • Grade DIN 20Cr4 CNBM Alloy Steel Round Bar Made in China System 5
  • Grade DIN 20Cr4 CNBM Alloy Steel Round Bar Made in China System 6
Grade DIN 20Cr4 CNBM Alloy Steel Round Bar Made in China

Grade DIN 20Cr4 CNBM Alloy Steel Round Bar Made in China

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Round Bar

Product Description 

1. Diameter: 8mm-250mm rou

2. Length:    2m, 3m, 5.8m, 6m or customized

3. Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN

4. Produce Process: smelt iron - EAF smelt billet - ESR smelt billet -hot rolled or forged -steel round bar and plate

5. Heat Treatment: annealing, normalizing, tempering, quenching

6. Surface Treatment: Black, Polished, Galvanized

7. Quality Assurance: We accept third party inspection for all orders. 

     You can ask testing organizations such as SGS, BV, etc. to test our products before shipping.

 

Chemical Composition

Grade

Dia.(mm)

C

Si

Mn

Cr

P

S

Ni

Cu

5120

16-85

0.18-0.24

0.17-0.37

0.50-0.80

0.70-1.00

≤0.035

≤0.035

≤0.03

≤0.03

5140

16-400

0.37-0.44

0.17-0.37

0.50-0.80

0.80-1.10

≤0.035

≤0.035

≤0.30

≤0.03

4135

13-230

0.32-0.40

0.17-0.37

0.40-0.70

0.80-1.10

≤0.035

≤0.035

≤0.03

≤0.03

4140

13-360

0.38-0.45

0.17-0.37

0.50-0.80

0.90-1.20

≤0.035

≤0.035

≤0.03

≤0.03

 

Application:

 Mechanism & Fasteners gear,    

 Stressed components for vehicles 

 Engines and machines   

 Parts of larger cross-section

 

Company Information:

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

 

 Packing & Delivery

1. Packaging: seaworthy package or as required 

2. Delivery: 35-45 days or based on quantity

 

Product Show

Grade DIN 20Cr4 CNBM Alloy Steel Round Bar Made in China

FAQ:

1.Your advantages?

Professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent    

customer solution proposale

2. Test & Certificate?

SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3. Factory or Trading Company?

CNBM is a trading company but we have so many protocol factories and CNBM works as a trading   department

of  these factories. Also CNBM is the holding company of many factories.

4. Payment Terms?

30% TT as deposit and 70% before delivery.

Irrevocable L/C at sight.

5. Trading Terms?

EXW, FOB, CIF, FFR, CNF

6. After-sale Service?

CNBM provides the services and support you need for every step of our cooperation. We're the business

partner you can trust.

For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q: What is the life cycle of special steel products?
The life cycle of special steel products typically involves several stages, including raw material extraction, steel production, manufacturing of specialized products, distribution, usage, and eventual disposal or recycling. This cycle starts with the extraction of iron ore and other raw materials, which are then processed and transformed into steel through various methods such as smelting and casting. Once the steel is produced, it is shaped and formed into specialized products through forging, rolling, or machining processes. These products are then distributed to various industries, where they are used for applications such as construction, automotive, aerospace, and energy. Throughout their usage, special steel products may undergo maintenance, repairs, or modifications. Eventually, when they reach the end of their life, these products can be recycled or disposed of in an environmentally responsible manner to minimize waste and resource consumption.
Q: How does special steel contribute to the construction machinery industry?
Special steel plays a crucial role in the construction machinery industry by providing high-strength and durable components. These components are essential for heavy-duty applications in construction machinery, such as excavators, bulldozers, cranes, and loaders. One of the key contributions of special steel to the construction machinery industry is its ability to withstand extreme stress and load-bearing requirements. Construction machinery often operates under severe conditions, including heavy loads, vibrations, and impacts. Special steel, with its excellent mechanical properties, can resist these conditions and maintain its structural integrity, ensuring the safety and reliability of the equipment. Moreover, special steel is often used in critical components of construction machinery, such as booms, buckets, tracks, and gears. These components are subjected to intense wear and tear due to constant use in harsh environments. Special steel, engineered with enhanced hardness and wear resistance, helps extend the lifespan of these components, reducing maintenance costs and downtime. Additionally, special steel provides superior corrosion resistance, which is vital for construction machinery used in humid or corrosive environments. By preventing rust and decay, special steel helps maintain the equipment's performance and longevity, ultimately increasing productivity and efficiency in construction projects. Furthermore, special steel enables the construction machinery industry to achieve innovative designs and advanced functionalities. Its versatility allows for the creation of complex shapes and precise tolerances, which are essential for optimizing the performance and efficiency of machinery. Special steel also enables the incorporation of advanced technologies, such as sensors and automation, enhancing the accuracy and productivity of construction equipment. In summary, special steel contributes significantly to the construction machinery industry through its ability to withstand extreme conditions, provide superior wear resistance and corrosion protection, and enable innovative designs. By utilizing special steel in the manufacturing process, construction machinery manufacturers can ensure the durability, safety, and efficiency of their equipment, ultimately benefiting the construction industry as a whole.
Q: What are the requirements for special steel used in military applications?
Special steel used in military applications must meet certain requirements to ensure optimal performance and durability in the field. These requirements include: 1. High strength: Military applications often involve extreme conditions, such as heavy loads, impacts, and shocks. Special steel used in these applications must have high strength to withstand these forces without deformation or failure. 2. Toughness: The steel should have excellent toughness to resist cracking or fracturing under high-stress situations. This is crucial for ensuring the safety of military personnel and equipment. 3. Corrosion resistance: Military operations can take place in various environments, including marine or coastal areas where exposure to moisture, saltwater, and other corrosive elements is common. Special steel used in military applications should have good corrosion resistance to maintain its structural integrity over time. 4. Heat resistance: Military equipment often encounters high temperatures due to friction, combustion, or exposure to explosives. The steel used must have good heat resistance to prevent deformation or loss of strength under these conditions. 5. Wear resistance: Military equipment is subject to frequent use, abrasive contact, and potential impact with foreign objects. Special steel used in these applications should have excellent wear resistance to minimize damage and prolong the lifespan of the equipment. 6. Machinability: Special steel used in military applications should be easy to machine and process into various shapes and sizes. This ensures that it can be tailored to specific requirements and easily integrated into different military systems. 7. Cost-effectiveness: While meeting all the above requirements, special steel used in military applications should also be cost-effective. The steel must offer a good balance between performance and cost to ensure efficient use of resources. By meeting these requirements, special steel used in military applications can provide the necessary strength, durability, and reliability needed for military operations, ensuring the safety and effectiveness of military personnel and equipment.
Q: How does special steel perform in abrasive wear applications?
Special steel is renowned for its outstanding performance in applications where abrasive wear is present. Its design specifically caters to endure the harsh conditions and high levels of abrasion that occur in diverse industrial processes. A notable characteristic of special steel is its remarkable hardness. It can effectively withstand the abrasive forces exerted by different materials, such as rocks, sand, or minerals, without experiencing significant wear or deterioration. Achieving this hardness involves a combination of alloying elements and heat treatment processes, which enhance the steel's ability to maintain its structural integrity even under extreme wear conditions. Furthermore, special steel often possesses a high level of toughness, allowing it to absorb impact and resist fracture or chipping. This property is particularly crucial in applications involving abrasive wear, where materials frequently collide and generate high levels of stress. The toughness of special steel enables it to withstand these impacts and sustain its performance over an extended period. Moreover, special steel exhibits excellent corrosion resistance, which is vital in abrasive wear applications that involve exposure to moisture, chemicals, or other corrosive agents. This resistance guarantees that the steel does not deteriorate or lose its effectiveness due to chemical reactions or oxidation, extending its lifespan and reducing the need for maintenance. To summarize, special steel excels in abrasive wear applications due to its hardness, toughness, and corrosion resistance. These properties enable it to endure the challenging conditions and high levels of abrasion encountered in various industrial processes, ensuring long-lasting performance and minimizing downtime.
Q: How does special steel perform in cryogenic applications?
Special steel is known for its excellent performance in cryogenic applications. Cryogenic temperatures refer to extremely low temperatures below -150 degrees Celsius (-238 degrees Fahrenheit). In such conditions, regular steel tends to become brittle and lose its strength, making it unsuitable for use. However, special steel, also known as cryogenic steel or low-temperature steel, is specifically designed to withstand these extreme cold temperatures. One of the key properties of special steel is its ability to maintain its mechanical properties even at cryogenic temperatures. It retains its strength, toughness, and ductility, ensuring that it can withstand the stresses and strains imposed on it in cryogenic environments. This allows special steel to be used in various applications, such as cryogenic storage tanks, pipelines, and equipment in industries like aerospace, energy, and healthcare. Special steel also exhibits excellent resistance to brittle fracture at low temperatures. This is crucial, as brittle fractures can occur when materials become too brittle and fail under stress. The unique composition and processing of special steel help prevent this, ensuring the integrity and safety of components in cryogenic systems. Moreover, special steel has a low coefficient of thermal expansion, meaning it experiences minimal dimensional changes when exposed to temperature variations. This property is highly advantageous in cryogenic applications, as it helps maintain the stability and reliability of equipment and structures. In addition, special steel offers good corrosion resistance, which is essential in cryogenic environments where the presence of moisture and certain chemicals can accelerate corrosion processes. The resistance to corrosion ensures the longevity and durability of components, reducing maintenance and replacement costs. Overall, special steel is a preferred choice for cryogenic applications due to its ability to maintain mechanical properties, resistance to brittle fracture, low thermal expansion, and corrosion resistance. These properties make it a reliable and efficient material for use in cryogenic systems, providing the necessary strength and durability even in extremely low-temperature conditions.
Q: What are the properties of nitriding steel?
Nitriding steel is a type of steel that undergoes a surface treatment process called nitriding. The main properties of nitriding steel include increased hardness, improved wear resistance, enhanced fatigue strength, and increased corrosion resistance. This is achieved by introducing nitrogen into the surface layer of the steel, forming a hard compound called nitrides. Nitriding steel also exhibits a low coefficient of friction, making it suitable for applications where sliding or rubbing contact occurs. Additionally, nitriding steel retains its core toughness and ductility, making it an ideal choice for components subjected to high-stress conditions.
Q: Can special steel be used for making aerospace components?
Yes, special steel can be used for making aerospace components. Special steel, also known as aerospace steel or aircraft steel, is specifically designed to meet the high demands and stringent requirements of the aerospace industry. It possesses exceptional strength, durability, and heat resistance properties, which are crucial for withstanding the extreme conditions experienced by aircraft components during flight. Aerospace components, such as landing gear, engine parts, fasteners, and structural elements, often require materials that can maintain their integrity under high temperatures, stress, and corrosive environments. Special steel alloys are developed to have excellent mechanical properties, including high tensile strength, fracture toughness, and resistance to fatigue, creep, and corrosion. These properties make them suitable for critical aerospace applications where safety and reliability are of utmost importance. Furthermore, special steel can be tailored to specific requirements, such as weight reduction, improved fuel efficiency, and enhanced performance. Through advanced alloying techniques and heat treatments, aerospace steel can be engineered to have desirable characteristics like increased hardness, wear resistance, and dimensional stability. This allows for the production of lighter and more efficient aerospace components without compromising on strength or safety. In conclusion, special steel is a preferred material for making aerospace components due to its exceptional mechanical properties, heat resistance, and corrosion resistance. Its ability to withstand extreme conditions and be customized to specific requirements makes it an ideal choice for manufacturing critical parts used in the aerospace industry.
Q: Can special steel be heat treated?
Yes, special steel can be heat treated. Heat treatment is a common process used to enhance the properties and performance of steel, including special steel. It involves heating the steel to a specific temperature and then cooling it rapidly or slowly to achieve desired characteristics such as increased hardness, improved strength, or better resistance to wear and corrosion.
Q: How is high-speed tool steel used in the manufacturing of drills and taps?
High-speed tool steel is commonly used in the manufacturing of drills and taps due to its excellent hardness, wear resistance, and ability to withstand high temperatures. This type of steel is able to retain its hardness at elevated temperatures, making it ideal for cutting tools that generate heat during operation. It enables drills and taps to effectively cut through various materials, including metal and wood, while maintaining their sharpness and durability. Additionally, high-speed tool steel allows for faster cutting speeds and increased productivity in manufacturing processes.
Q: What are the different non-destructive testing techniques used for special steel?
There are several non-destructive testing techniques commonly used for special steel. These include magnetic particle testing, ultrasonic testing, radiographic testing, eddy current testing, and liquid penetrant testing.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords