• ERW Welded Steel Pipes For Bicycle System 1
  • ERW Welded Steel Pipes For Bicycle System 2
  • ERW Welded Steel Pipes For Bicycle System 3
ERW Welded Steel Pipes For Bicycle

ERW Welded Steel Pipes For Bicycle

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or L/C
Min Order Qty:
50MT m.t.
Supply Capability:
based on order m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

ERW Welded Steel Pipes

Application of ERW Welded Steel Pipes For Bicycle

It is widely applied to line pipe and casing and tubing in oil transportation and casing field, and it is used in Low,high pressure liquid and gassy transportation and it is also good Structure pipe (for furniture, window, door, building , bridge, mechanical etc).

Package: bundles with anti-rust painting and with plastic caps

Standard of of ERW Welded Steel Pipes For Bicycle

API SPEC 5L, API SPEC 5CT, ASTM A53, GB/T9711.1

Steel Grade of of ERW Welded Steel Pipes For Bicycle

API SPEC 5L: B, X42, X46, X52, X56, X60, X65

API SPEC 5CT: J55, K55, N80, L80-1

ASTM A53: A, B, C

GB/T9711.1:L242L290L320L360L390L415L450

Sizes of ERW Welded Steel Pipes For Bicycle

*Remark: Besides below sizes, we also can arrange production based on requirement of customers

OD

WT

WEIGHT

INCH

MM

SCH

MM

INCH

KG/M

LB/INCH

1 1/2”

48.3

STD-40

3.68

0.145

4.09

2.75

1 1/2”

48.3

XS-80

5.08

0.2

5.47

3.68

2”

60.3

STD-40

3.91

0.154

5.49

3.69

2”

60.3

XS-80

5.54

0.218

7.56

5.08

2 1/2”

73

STD-40

5.16

0.203

8.72

5.86

2 1/2”

73

XS-80

7.01

0.276

11.52

7.74

3”

88.9

STD-40

5.49

0.216

11.41

7.67

3”

88.9

XS-80

7.62

0.3

15.43

10.37

3 1/2”

101.6

STD-40

5.74

0.226

13.71

9.21

3 1/2”

101.6

XS-80

8.08

0.318

18.83

12.65

4”

114.3

STD-40

6.02

0.237

16.24

10.91

4”

114.3

XS-80

8.56

0.337

22.55

15.15

5”

141.3

STD-40

6.55

0.258

21.99

14.78

5”

141.3

XS-80

9.53

0.375

31.28

21.02

6”

168.3

STD-40

7.11

0.28

28.55

19.19

6”

168.3

XS-80

10.97

0.432

42.99

28.89

8”

219.1

STD-40

8.18

0.322

42.98

28.88

8”

219.1

XS-80

12.7

0.5

65.3

43.88

10”

273

STD-40

9.27

0.365

60.9

40.92

10”

273

80

15.09

0.594

96.95

65.15

12”

323.8

STD

9.53

0.375

74.61

50.13

12”

323.8

40

10.31

0.406

80.51

54.1

12”

323.8

XS

12.7

0.5

98.42

66.14

12”

323.8

80

17.48

0.688

133.38

89.63

14”

355.6

40

11.13

0.438

95.51

64.18

14”

355.6

XS

12.7

0.5

108.48

72.9

14”

355.6

80

19.05

0.75

159.71

107.32

16”

406.4

XS-40

12.7

0.5

124.55

83.69

18”

457

STD

9.53

0.375

106.23

71.38

18”

457

40

14.27

0.562

157.38

105.75

18”

457

80

23.83

0.938

257.13

172.78

20”

508

40

15.09

0.594

185.28

124.5

20”

508

80

26.19

1.031

314.33

211.22

Standard: GB/9711.1

Mechanical Pr

Standard

Grade

MPa

MPa

Min(%)

Yield strength

Tensile Strength

Elongation

GB/T9711.1

L245

≥245

≥415

21

L290

≥290

≥415

21

L320

≥320

≥435

20

L360

≥360

≥460

19

L390

≥390

≥490

18

L415

≥415

≥520

17

L450

≥450

≥535

17

L485

≥485

≥570

17

Chemical Composition(%)

Standard

Grade

C

Mn

P

S

Max

Max

Max

Max

GB/T9711.1

L245

0.26

0.15

0.030

0.030

L290

0.28

1.25

0.030

0.030

L320, L360

0.30

1.25

0.030

0.030

L390, L415

0.26

1.35

0.030

0.030

L450

0.26

1.40

0.030

0.030

L485

0.23

1.60

0.025

0.030

Standard: GB/9711.2

Mechanical Properties

Standard

Grade

MPa

Yield strength

MPa

Tensile Strength

Min(%)

Elongation

GB/T9711.2

Rt0.5Min

Rt0.5Max

RmMin

Rt0.5/Rm Max

L245

 

245

 

440

0.80

 

22

L245

0.85

L290

 

290

 

440

0.80

21

L290

0.85

L360

 

360

 

510

0.85

 

20

L360

0.85

L415

 

415

 

565

0.85

 

18

L415

0.85

L450

450

570

535

0.87

18

L485

485

605

570

0.90

18

 

Chemical Composition (%)

Standard

Grade

C

Mn

P

S

V

Nb

Ti

CEV

Max

Max

Max

Max

Max

Max

Max

Max

GB/T9711.2

L245NB

0.16

1.1

0.025

0.020

-

-

-

0.42

L290NB

0.17

1.2

0.025

0.020

0.05

0.05

0.04

0.42

L360NB

0.20

1.6

0.025

0.020

0.10

0.05

0.04

0.45

L415NB

0.21

1.6

0.025

0.020

0.15

0.05

0.04

-

L245NB, L290NB

 

0.16

 

1.5

0.025

0.020

 

0.04

 

0.04

 

-

 

0.4

L360NB

0.16

1.6

0.025

0.020

0.05

0.05

0.04

0.41

L415NB

0.16

1.6

0.025

0.020

0.08

0.05

0.06

0.42

L450NB

0.16

1.6

0.025

0.020

0.10

0.05

0.06

0.43

L485NB

0.16

1.7

0.025

0.020

0.10

0.06

0.06

0.43

Standard: ASTM A53

Mechanical Properties

Standard

Grade

MPa

MPa

Yield strength

Tensile Strength

ASTM A53M

A

205

330

B

240

415

 Chemical Composition(%)

Standard

Grade

C

Mn

P

S

V

Ni

Cu

Cr

Mo

Max

Max

Max

Max

Max

Max

Max

Max

Max

ASTM A53M

A

0.25

0.95

0.05

0.045

0.08

0.4

0.5

0.4

0.15

B

0.30

1.20

0.05

0.045

0.08

0.4

0.5

0.4

0.15

ERW Welded Steel Pipes For Bicycle

ERW Welded Steel Pipes For Bicycle

Q: What is the typical diameter range for steel pipes?
The typical diameter range for steel pipes can vary depending on the specific application and industry requirements. However, in general, steel pipes can have diameters ranging from as small as 0.5 inches (12.7 millimeters) up to several feet (over a meter) in diameter. The most commonly used steel pipes for various purposes, such as plumbing, construction, and transportation of fluids or gases, typically fall within the range of 1/2 inch (13 millimeters) to 36 inches (914 millimeters) in diameter. It is important to note that larger diameter steel pipes are often used for industrial applications, such as oil and gas pipelines, while smaller diameter pipes are commonly used for residential and commercial plumbing systems.
Q: Are steel pipes suitable for nuclear power plants?
Steel pipes are an ideal choice for nuclear power plants. This is because steel is a commonly used material in the construction of these plants, thanks to its exceptional mechanical properties, high strength, and durability. Various applications in nuclear power plants rely on steel pipes, including the transportation of cooling water, hot gases, and steam. The steel used in nuclear power plants undergoes careful selection and testing to meet strict safety regulations and quality standards. This is crucial because these pipes must have outstanding resistance to corrosion and high-temperature environments. They are exposed to harsh conditions such as high pressure, high temperatures, and radioactive materials. Moreover, steel pipes have a long lifespan and require minimal maintenance. This makes them a cost-effective option for nuclear power plants. They can endure extreme conditions, ensuring the plant's safe and reliable operation. Additionally, steel pipes can be easily fabricated, installed, and repaired, which is vital for the efficient functioning of a nuclear power plant. In summary, steel pipes are highly suitable for nuclear power plants due to their strength, durability, resistance to corrosion, and ability to withstand extreme conditions.
Q: Can steel pipes be used for the construction of railway tracks?
No, steel pipes are not suitable for the construction of railway tracks. Railway tracks require specialized rails made of steel that are specifically designed to withstand the heavy loads and constant wear and tear associated with train traffic. Pipes do not have the necessary shape, strength, or durability to serve as railway tracks.
Q: What are the common applications of steel pipes in industrial settings?
Steel pipes are commonly used in industrial settings for various applications such as transporting fluids and gases, providing structural support in construction projects, conveying materials in manufacturing processes, and facilitating the distribution of water, oil, and gas in pipelines.
Q: Is there any difference between thermal expansion seamless steel pipe and seamless steel pipe?
Differ,Thermal expansion seamless steel tube is what we often call "thermal expansion tube", the density is relatively low, but a strong contraction of the steel pipe, (seamless steel pipe) can be referred to as "heat expansion.". A finishing rolling process for pipe rolling by using oblique rolling or drawing method to enlarge pipe diameter. In a relatively short period of time, the outer diameter of the steel pipe becomes larger, and the seamless tube with nonstandard and special type can be produced, and the cost is lower and the production efficiency is high, which is the development trend of the international rolling tube field at present.
Q: How are steel pipes used in the manufacturing of food processing equipment?
Steel pipes are commonly used in the manufacturing of food processing equipment due to their durability, strength, and resistance to corrosion. These pipes are used to transport various food products such as liquids, powders, and gases within the equipment. They are also utilized in the construction of frames, supports, and structures for food processing machinery, ensuring stability and longevity. Additionally, steel pipes are often employed in the creation of heat exchangers, which are crucial for heating or cooling purposes in food processing equipment.
Q: What are the common sizes of steel pipe fittings?
The common sizes of steel pipe fittings can vary depending on the specific application and industry standards. However, there are several standard sizes that are commonly used across different industries. These sizes range from ¼ inch to 48 inches in diameter. Some of the most common sizes include ½ inch, ¾ inch, 1 inch, 1 ¼ inch, 1 ½ inch, 2 inch, 2 ½ inch, 3 inch, 4 inch, 6 inch, 8 inch, 10 inch, 12 inch, 14 inch, 16 inch, 18 inch, 20 inch, 24 inch, 30 inch, 36 inch, 42 inch, and 48 inch. These sizes are often available in various lengths to accommodate different installation requirements. It is important to consult industry standards and specifications to determine the appropriate size of steel pipe fittings for a specific project.
Q: What quota is reserved for buried DN20 steel pipe?
If it is reserved for embedded pipe pre buried steel waterproof casing, set of waterproof casing steel production and installation is to set the quota items, if the outdoor installation of welded steel pipe buried steel casing pre quota items, if it is a reserved hole, then there is no need to set the quota items.
Q: What are the common welding techniques used for steel pipes?
The common welding techniques used for steel pipes include shielded metal arc welding (SMAW), gas metal arc welding (GMAW), flux-cored arc welding (FCAW), and submerged arc welding (SAW).
Q: Can steel pipes be used for oil refineries?
Yes, steel pipes are commonly used in oil refineries due to their high strength, durability, and resistance to corrosion, making them suitable for transporting various petroleum products and chemicals within the refinery infrastructure.
All these steel pipes are suitable for the industries of oil, natural gas,ship building,chemical, environmental protection,boiler, water conservancy, electrical industry,steel structure, building and other related fields.

1. Manufacturer Overview

Location Tianjin, China
Year Established 1997
Annual Output Value Above Three Million To Five Million RMB
Main Markets Main land
Company Certifications ISO 9001:2010;API 5L;

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a) Trade Capacity
Nearest Port Tianjin
Export Percentage 40% - 50%
No.of Employees in Trade Department 300-500 People
Language Spoken: English; Chinese
b) Factory Information
Factory Size: 40,000 square meters
No. of Production Lines Above 10
Contract Manufacturing OEM Service Offered; Design Service Offered
Product Price Range Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords