• ASTM A36 high quality angle steel 20-250mm System 1
  • ASTM A36 high quality angle steel 20-250mm System 2
  • ASTM A36 high quality angle steel 20-250mm System 3
ASTM A36 high quality angle steel 20-250mm

ASTM A36 high quality angle steel 20-250mm

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
200000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Angle steel Details:

Minimum Order Quantity:Unit:m.tLoading Port:
Supply Ability:Payment Terms:Package:bundle

Product Description:

Product Description:

Specifications of Angle Steel

1. Invoicing on theoretical weight or actual weight as customer request

2. Length: 6m, 9m, 12m as following table

3. Sizes

Angle Steel

Sizes: 25mm-250mm

a*t

25*2.5-4.0

70*6.0-9.0

130*9.0-15

30*2.5-6.6

75*6.0-9.0

140*10-14

36*3.0-5.0

80*5.0-10

150*10-20

38*2.3-6.0

90*7.0-10

160*10-16

40*3.0-5.0

100*6.0-12

175*12-15

45*4.0-6.0

110*8.0-10

180*12-18

50*4.0-6.0

120*6.0-15

200*14-25

60*4.0-8.0

125*8.0-14

250*25

5. Payment terms:

1).100% irrevocable L/C at sight.

2).30% T/T prepaid and the balance against the copy of B/L.

3).30% T/T prepaid and the balance against L/C

6.Material details:

Alloy No

Grade

Element (%)

C

Mn

S

P

Si

 

 

 

 

 

 

 

Q235

B

0.12—0.20

0.3—0.7

≤0.045

≤0.045

≤0.3

 

 

 

 

 

 

 

Alloy No

Grade

Yielding strength point( Mpa)

Thickness (mm)

≤16

16--40

40--60

60--100

 

 

 

 

 

 

Q235

B

235

225

215

205

Alloy No

Grade

Tensile strength (Mpa)

Elongation after fracture (%)

Thickness (mm)

 

≤16

16--40

40--60

60--100

 

 

 

 

 

 

 

Q235

B

375--500

26

25

24

23

Usage & Applications of Angle Steel

According to the needs of different structures, Angle can compose to different force support component, and also can be the connections between components. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.

Packaging & Delivery of Angle Steel

1. Packing: it is nude packed in bundles by steel wire rod

2. Bundle weight: not more than 3.5MT for bulk vessel; less than 3 MT for container load

3. Marks:

Color marking: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.

Tag mark: there will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.

If loading by container the marking is not needed, but we will prepare it as customer request.

Production flow of Angle Steel

Material prepare (billet) —heat up—rough rolling—precision rolling—cooling—packing—storage and transportation

Q:How do you prevent corrosion on steel angles?
One effective method to prevent corrosion on steel angles is by applying a protective coating such as paint or zinc. This barrier creates a physical barrier between the steel and the corrosive elements in the environment, preventing direct contact and reducing the chances of corrosion. Regular maintenance and inspection, along with promptly addressing any signs of damage or rust, can also help prevent corrosion on steel angles.
Q:Can steel angles be used as supports for mechanical or electrical equipment?
Indeed, mechanical or electrical equipment can be supported by steel angles. Due to their versatility and strength, steel angles are apt for a diverse array of uses. They offer stability, rigidity, and support, effectively securing mechanical or electrical equipment. The L-shaped configuration of steel angles facilitates effortless attachment and installation, rendering them convenient for a multitude of mounting necessities. Moreover, steel angles can be readily tailored and fabricated to fulfill precise specifications, guaranteeing a dependable and trustworthy support system for the equipment.
Q:What are the different types of steel angles used in bridges?
There are several types of steel angles used in bridges, including equal angles, unequal angles, and L-shaped angles. These angles are commonly used to provide structural support and reinforcement in bridge construction.
Q:What is the maximum bending moment for a steel angle?
The maximum bending moment of a steel angle is influenced by various factors, including the angle's dimensions and properties, the load applied, and the support conditions. Typically, the highest stress occurs at the location where the angle is subjected to the maximum bending moment due to the applied load. To determine the maximum bending moment of a steel angle, it is necessary to consider the section modulus (which measures the angle's resistance to bending), the distance between the load and support, and the magnitude and distribution of the load. The section modulus is calculated based on the angle's dimensions, including its thickness, height, and width. Engineers analyze the applied load and support conditions using principles of structural mechanics to ascertain the maximum bending moment of a steel angle. This information is crucial for designing and evaluating the structural integrity of steel angle components in various applications, such as construction, manufacturing, and infrastructure projects. It is important to recognize that the specific dimensions, material properties, and applied load can significantly affect the maximum bending moment. Therefore, it is essential to refer to relevant design codes, standards, or seek guidance from a qualified structural engineer for precise and detailed calculations specific to a particular steel angle.
Q:What is the maximum allowable bearing stress for a steel angle?
The maximum allowable bearing stress for a steel angle depends on various factors such as the type of steel being used, the thickness and size of the angle, and the specific application or design requirements. Generally, the maximum allowable bearing stress is determined by considering the structural strength and stability of the angle under the expected load conditions. To determine the maximum allowable bearing stress for a steel angle, it is essential to consult relevant industry standards, such as the American Institute of Steel Construction (AISC) specifications or the Eurocode design standards. These standards provide guidelines and formulas to calculate the maximum allowable bearing stress based on the angle's properties and load factors. Additionally, the maximum allowable bearing stress can also be influenced by factors such as the presence of any additional reinforcements, the presence of corrosion or surface imperfections, and the method of connection or support. Therefore, it is crucial to refer to the appropriate design codes and consult a structural engineer or professional with expertise in steel design to accurately determine the maximum allowable bearing stress for a specific steel angle in a given application.
Q:What does L50*4 angle mean in CAD?
Angle called angle, the steel strip is perpendicular to each other on both sides into the corner. There are equal angles and unequal angles. The two sides of an equal angle steel are equal in width. The specifications are expressed in millimeters of edge width * edge width * edge thickness. Such as "30 x 30 x 3", that is 30 mm width equal angle, edge thickness of 3 mm.
Q:How do steel angles contribute to sustainable construction?
Steel angles play a crucial role in sustainable construction in various ways. To begin with, steel possesses remarkable durability and longevity, resulting in structures built with steel angles having a longer lifespan compared to those constructed with alternative materials. As a result, the necessity for frequent repairs or replacements is reduced, thereby minimizing waste and lessening the overall environmental impact of construction. Furthermore, steel is an extremely recyclable material. When a structure reaches the end of its life cycle, steel angles can be effortlessly recycled and repurposed for other construction ventures. This diminishes the demand for new steel production, which consumes significant energy and can result in substantial carbon emissions. Moreover, steel angles offer architects and engineers design flexibility, enabling them to create more efficient and innovative structures. This can lead to optimized building designs that require less energy for heating, cooling, and maintenance, contributing to energy savings and a decrease in greenhouse gas emissions. Additionally, steel angles are lightweight yet remarkably sturdy, resulting in reduced material usage and transportation costs. Consequently, the overall carbon footprint associated with steel construction is lower compared to other materials. Furthermore, steel angles possess exceptional fire resistance properties, making them a safer choice for construction. This prolongs the lifespan of structures and diminishes the risk of damage or destruction during fires. As a result, the need for rebuilding or reconstructing is reduced, leading to less material waste and environmental impact. In conclusion, steel angles contribute to sustainable construction through their durability, recyclability, design flexibility, energy efficiency, lightweight nature, fire resistance, and overall reduced environmental impact. By incorporating steel angles into construction projects, we can create more sustainable and environmentally friendly structures that benefit both the present and future generations.
Q:Can steel angles be used in railway track construction?
Yes, steel angles can be used in railway track construction. Steel angles are often used as a structural component in the construction of railway tracks. They provide strength and stability to the track system, helping to support the weight of the train and distribute the load evenly. Steel angles are commonly used for the construction of rail joints, which connect two sections of rail together, as well as for the installation of rail fastenings and track accessories. They are durable, resistant to wear, and can withstand heavy loads and high impact forces, making them an ideal choice for railway track construction.
Q:How do you calculate the slenderness ratio of a steel angle?
To calculate the slenderness ratio of a steel angle, you need to determine the length and the moment of inertia of the angle section. The slenderness ratio is a measure of how slender or slender a member is, and it helps in determining its stability and ability to resist buckling. First, measure the length of the steel angle, which is the distance between its two ends. This length should be measured in the same unit as the dimensions of the angle section. Next, calculate the moment of inertia of the steel angle section. The moment of inertia is a measure of the section's resistance to bending and is typically denoted by the symbol "I". It depends on the dimensions of the angle section and can be obtained from reference tables or calculated using mathematical formulas. Once you have the length and moment of inertia of the steel angle, you can calculate the slenderness ratio using the formula: Slenderness ratio = (Length of angle) / (√(Moment of inertia)) Make sure the length and moment of inertia are expressed in the same unit before performing the calculation. The resulting slenderness ratio will be a dimensionless value. It is important to note that the slenderness ratio is used to determine the appropriate design criteria and allowable loads for the steel angle. Different design codes or standards may have specific limits or guidelines for the maximum slenderness ratio that can be used safely in different applications. Therefore, it is crucial to consult the relevant design codes or seek professional engineering advice to ensure the correct and safe use of the steel angle.
Q:How do steel angles contribute to the overall safety of a building?
Angle irons, also known as steel angles, play a vital role in improving the overall safety of a building. These structural elements have unique properties and advantages that make them widely used in construction. To begin with, steel angles contribute to the structural support and stability of a building. They are commonly utilized to reinforce and strengthen the framework, particularly at critical load-bearing points. By distributing and transferring weight and forces, steel angles prevent excessive deflection or deformation of the building, ensuring its integrity and stability, even under heavy loads or adverse conditions. This reinforcement is particularly crucial in tall buildings or structures located in earthquake-prone or high-wind regions. Moreover, steel angles enhance the safety of a building by acting as protective barriers or shields against potential hazards. For instance, they can be installed as guards or handrails on staircases, balconies, or elevated platforms. These barriers play a vital role in preventing accidental falls or injuries, creating a secure environment for occupants. Steel angles can also be utilized to create safety barriers around machinery or equipment, preventing unauthorized access or accidental contact. Additionally, steel angles contribute to enhancing fire resistance in buildings. Steel is inherently fire-resistant and does not contribute to the spread of flames. By incorporating steel angles into the structural design of a building, it becomes possible to effectively support fire-rated walls, partitions, or fireproof doors. This facilitates the compartmentalization of the building, slowing down the spread of fire and allowing occupants more time to evacuate safely. Furthermore, steel angles offer longevity and durability, making them an ideal choice for long-term safety. Steel is highly resistant to corrosion, weathering, and other environmental factors, ensuring the structural integrity of the building over time. This durability reduces the risk of sudden structural failures or collapses, thereby enhancing overall safety for occupants and nearby structures. In conclusion, steel angles play a significant role in improving the overall safety of a building. Their ability to provide structural support, act as barriers, enhance fire resistance, and offer durability make them crucial components for ensuring the stability and protection of a structure and its occupants.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords