• Photovoltaic Grid-Connected Inverter SG500MX-M System 1
  • Photovoltaic Grid-Connected Inverter SG500MX-M System 2
Photovoltaic Grid-Connected Inverter SG500MX-M

Photovoltaic Grid-Connected Inverter SG500MX-M

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
50 unit
Supply Capability:
1000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of Photovoltaic Grid-Connected Inverter SG500MX-M Description

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into

 autility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network.

It is acritical BOS–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar inverters have

special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

Suitable for 50Hz/60Hz grid, could be used in Asia, North America and Europe.

 

 

2. Main Features of the Photovoltaic Grid-Connected Inverter SG500MX-M

Advanced three-level circuit structure improves product's performance

4-MPPT, wide MPP voltage range

Modular design, long operation time

 

Film bus capacitors with long lifespan

Rotating the modules in use extends the inverter's lifespan

Inverter sleeping at night doubles the PCB lifespan

Elevated cooling performance and protection level ensures reliable operation

 

Less THD, more grid-friendly

Less common-mode interference, more environment-friendly

Compatible with two-winding transformer

Flexible setting of 1 to 4 MPPT

Reactive compensation on asymmetric power grid

Direct parallel connection at low voltage side, easy to expand the capacity

 

Comprehensive modular design

All components front-maintenance

Draw-type modules, service friendly design

 

Less THD, more grid-friendly

Less common-mode interference, more environment-friendly

Compatible with two-winding transformer

Flexible setting of 1 to 4 MPPT

Reactive compensation on asymmetric power grid

TÜV, CE, CGC certification, compliance with BDEW

 

 

3. Photovoltaic Grid-Connected Inverter SG500MX-M Images

 

 

 

 

 

4. Photovoltaic Grid-Connected Inverter SG500MX-M Specification

Input Side Data

 

Max. PV input power

560kW

Max. PV input voltage

1000V

Start voltage

520V

Min. operation voltage

480V

Max. PV input current

1064A

MPP voltage range

480~850V

No. of MPPTs

1, 2, 3, 4

No. of DC inputs

2 x 4

Output Side Data

 

Nominal AC output power

500kW

Max. AC output apparent power

550kVA

Max. AC output current

1018A

THD

<3%(Nominal power)

Nominal AC voltage

315V

AC voltage range

252~362V

Nominal grid frequency

50/60Hz

Grid frequency range

47~52 / 57~62Hz

Power factor

>0.99@default value at nominal power, adj. 0.9 overexcited~0.9 underexcited

Isolated transformer

No

DC current injection

<0.5 % In

Efficiency

 

Max. efficiency

98.80%

European efficiency

98.60%

Protection

 

Input side disconnection device

DC load switch

Output side disconnection device

AC load switch

DC overvoltage protection

Yes

AC overvoltage protection

Yes

Grid monitoring

Yes

Ground fault monitoring

Yes

Overheat protection

Yes

Insulation monitoring

Yes

General Data

 

DimensionsW×H×D

1606×2034×860mm

Weight

1400kg

Operating ambient temperature range

-30~+55

Night power consumption

<100W

External auxiliary supply voltage

220V, 8A

Cooling method

Temperature controlled aircooling

Ingress protection rating

IP21

Allowable relative humidity range

0~95% no condensing

Max. operating altitude

6000m(3000m derating)

Fresh air consumption

5575 m³/h

Display

Touch screen LCD

Communication

RS485/Modbus, Ethernet

 

5. FAQ of Photovoltaic Grid-Connected Inverter SG500MX-M

Q1. What is the difference between inverter and solar inverter?

A1. Inverter only has AC inpput, but solar inverter both connect to AC input and solar panel, it saves more power.

 

Q2. What is the difference between MPPT&PWM?

A2. MPPT has higher efficiency, it can track the max power point and won't waste energy.

 

Q:How does a solar inverter handle voltage dips or surges in the grid?
A solar inverter handles voltage dips or surges in the grid by incorporating various protective mechanisms. During a voltage dip, the inverter's control system detects the change and adjusts its power output accordingly to maintain a stable voltage and frequency. It may also utilize energy storage systems to compensate for the temporary drop in grid voltage. In the case of voltage surges, the inverter employs surge protection devices to prevent damage to the system. Additionally, advanced inverters may have built-in voltage regulation capabilities to stabilize the output voltage even during significant fluctuations in the grid.
Q:Can a solar inverter be used in systems with different module strings?
Yes, a solar inverter can be used in systems with different module strings. Solar inverters are designed to be compatible with a wide range of module string configurations, allowing for flexibility in system design and installation. The inverter's maximum input voltage and power ratings should be considered to ensure compatibility with the different module strings, but as long as these specifications are within the inverter's limits, it can effectively convert the DC power generated by the module strings into AC power for use in the system.
Q:What are the key safety features to look for in a solar inverter?
The key safety features to look for in a solar inverter include overvoltage protection, ground fault protection, arc fault protection, and rapid shutdown capability. These features help ensure the safe and efficient operation of the solar system, protecting against electrical hazards and reducing the risk of fire or injury.
Q:Can a solar inverter be used in extreme weather conditions?
Yes, solar inverters are designed to withstand a wide range of weather conditions, including extreme heat, cold, humidity, and even harsh environmental factors. They are built to be durable and reliable, ensuring their functionality and performance in various climates and weather conditions.
Q:Can a solar inverter be used with different solar panel types?
Solar inverters are capable of being utilized with various types of solar panels. Their purpose is to convert the direct current generated by solar panels into alternating current, which is suitable for powering household appliances and injecting into the electrical grid. So long as the solar panels produce compatible levels of DC voltage and current, they can be connected to the solar inverter. Various solar panel types, such as monocrystalline, polycrystalline, and thin-film, may possess different electrical characteristics. However, modern solar inverters are typically equipped with advanced electronics that can adapt to these discrepancies. Nevertheless, it is crucial to ensure the solar inverter is appropriately matched with the solar panel specifications in order to achieve optimal performance and efficiency.
Q:How does a solar inverter convert DC power to AC power?
A solar inverter converts DC power to AC power by utilizing electronic components and a complex control system. The process involves several stages: first, the DC power generated by solar panels is converted into high-frequency AC power using a high-frequency transformer. This AC power is then rectified and filtered to create a stable DC voltage. The DC voltage is further processed by an inverter circuit, which rapidly switches the DC voltage on and off to create an AC waveform. Finally, the AC waveform is filtered and conditioned to match the desired output requirements, allowing the solar inverter to efficiently convert DC power from the solar panels into usable AC power for electrical devices.
Q:Can a solar inverter be used with a smart home system?
Yes, a solar inverter can be used with a smart home system. Smart home systems are designed to integrate with various devices and technologies, including solar inverters. By connecting a solar inverter to a smart home system, users can monitor and control their solar energy production, track energy consumption, and optimize energy usage based on real-time data. This integration allows for increased energy efficiency and convenience in managing solar power within a smart home environment.
Q:How does a solar inverter affect the voltage stability of a solar system?
A solar inverter plays a crucial role in maintaining voltage stability in a solar system. It converts the direct current (DC) generated by solar panels into alternating current (AC) suitable for use in homes and businesses. By monitoring and adjusting voltage levels, a solar inverter ensures that the power output remains consistent and within acceptable limits. This helps to prevent voltage fluctuations, voltage drops, and other electrical instabilities, ensuring a stable and reliable power supply from the solar system.
Q:How do you calculate the payback period for a solar inverter?
To calculate the payback period for a solar inverter, you need to determine the initial cost of the inverter and the annual savings or earnings it generates. Divide the initial cost by the annual savings or earnings to determine the number of years it will take to recoup the investment. This will give you the payback period for the solar inverter.
Q:How does a solar inverter handle voltage sags or swells in the grid?
A solar inverter handles voltage sags or swells in the grid by continuously monitoring the voltage levels. When it detects a sag or swell, it adjusts its internal circuitry to regulate the output voltage accordingly. This ensures that the connected solar panels continue to operate within their optimal voltage range, minimizing any negative impact on the overall power generation system.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords