• Gird Tied Solar Inverter CNBM-3000MTL System 1
  • Gird Tied Solar Inverter CNBM-3000MTL System 2
  • Gird Tied Solar Inverter CNBM-3000MTL System 3
Gird Tied Solar Inverter CNBM-3000MTL

Gird Tied Solar Inverter CNBM-3000MTL

Ref Price:
get latest price
Loading Port:
Shenzhen
Payment Terms:
TT
Min Order Qty:
1 set set
Supply Capability:
3000 per month set/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Features of Grid Tied Solar Inverter CNBM-3000MTL

CNBM International Corporation (CNBM International) is the most important trading platform of CNBM Group Corporation, a state-owned company under the direct supervision of State-owned Assets Supervision and Administration Commission of the State Council.

The Grid Connected Solar Inverter we can offer is 1.5kw to 20kw.

Introduction of Grid Connected Solar Inverter CNBM-3000MTL

Maximum efficiency of 97.8% and wide input voltage range
Integrated DC switch-disconnected
MTL-String
Sound control
Bluetooth/RF technology /Wi-Fi
Transformerless GT topology
5 years warranty (10 years as optional)

Technical data of Grid Tied Solar Inverter CNBM-3000MTL

Model

CNBM-2500MTL

CNBM-3000MTL

Input data (DC)

 

 

Max. DC power

2700W

3200W

Max. DC voltage

500V

500V

Start voltage

150V

150V

PV voltage range

100V-500V

100V-500V

Max. input current

10A

10A

Number of MPP trackers /strings per MPP tracker

2/1

2/1

Output (AC)

 

Rated AC output power

2500W

3000W

Max. AC power

2500W

3000W

Max. output current

12.5A

15A

Power factor

1

1

THDI

<3%

<3%

AC connection

Single phase

Single phase

Efficiency

 

Max. efficiency

97.5%

97.5%

Euro weighted efficiency

97%

97.4%

MPPT efficiency

99.5%

99.5%

Protection devices

 

Output over voltage protection-varistor

yes

yes

Ground fault monitoring

yes

yes

Grid monitoring

yes

yes

General Data

 

Dimensions (W / H / D) in mm

360/421/152

360/421/152

Weight

15.6KG

15.6KG

Operating temperature range

–30°C ... +60°C

–30°C ... +60°C

Altitude

2000m(6560ft) without derating

Self-Consumption night

< 0.5 W

< 0.5 W

Topology

Transformerless

Cooling concept

Natural

Natural

Environmental Protection Rating

IP65

IP65

Features

 

DC connection

H4/MC4(opt)

H4/MC4(opt)

Display

LCD

LCD

Interfaces: RS485/RS232/Bluetooth / RF/Zigbee/Wifi

yes/yes/opt/opt/opt

Warranty: 5 years / 10 years

yes /opt

Certificates and approvals

CEVDE 0126-1-1DK5940G83/1-1G59/2RD1663EN50438

VDE-AR-N4105CEI-021IEC-62109ENEL-Guide

CNBM-3000MTL is simple national setting of line supply monitoring, Easy country configuration, with Multi-language,display, currently available for most of the countries over the world.With technical creativity and scientific management, the factory established first class R&D and test centers, as well as management and R&D teams comprising of PhDs and masters with overseas qualification.

Figure 1 the application of Grid Tied Solar Inverter CNBM-3000MTL

Grid Tied Solar inverter CNBM-3000MTL

 

Figure 2 the application of Grid Tied Solar Inverter CNBM-3000MTL

 

Grid Tied Solar Inverter CNBM-3000MTL

 

Q:Can a solar inverter be used with smart home systems?
Yes, a solar inverter can be used with smart home systems. Smart home systems are designed to integrate and control various devices and appliances, including solar inverters. By connecting the solar inverter to a smart home system, users can monitor and manage their solar energy production, track energy consumption, and optimize energy usage for maximum efficiency. This integration allows for greater control and automation of the solar power system within the smart home ecosystem.
Q:What is the role of voltage support in a solar inverter?
The role of voltage support in a solar inverter is to ensure that the output voltage from the inverter remains stable and within acceptable limits. It helps regulate the voltage to match the requirements of the connected load, preventing any voltage fluctuations or overvoltage conditions that could potentially damage the equipment or disrupt the operation of the solar power system.
Q:What is the difference between an on-grid and off-grid solar inverter?
An on-grid solar inverter is designed to convert the DC power generated by solar panels into AC power that can be fed into the electricity grid. It synchronizes the solar power output with the grid's frequency and voltage, ensuring a seamless integration and allowing any excess power to be exported back to the grid. On the other hand, an off-grid solar inverter is used in standalone solar power systems that are not connected to the grid. It converts the DC power from solar panels into AC power for immediate use or storage in batteries. These systems typically require additional components like batteries and charge controllers to manage power storage and supply during periods of low solar generation or high demand. In summary, the main difference between the two types of inverters is their purpose: on-grid inverters are used for grid-tied systems, while off-grid inverters are used in standalone systems not connected to the grid.
Q:Are there any limitations on the angle of the solar panels when using a solar inverter?
Yes, there are limitations on the angle of the solar panels when using a solar inverter. The angle at which solar panels are installed can affect their efficiency and overall performance. Ideally, solar panels should be installed at an angle that allows them to receive maximum sunlight throughout the day. Most solar panels are designed to work optimally when installed at an angle that is equal to the latitude of the location. This angle allows the panels to capture the most sunlight during peak hours. However, this is not a strict rule and variations are possible depending on the specific location and climate conditions. If solar panels are installed at an angle that is too steep or too shallow, it can result in reduced energy production. Steep angles may cause the panels to lose sunlight during certain times of the day, while shallow angles may not allow for optimal sunlight absorption. Additionally, extreme angles can also increase the risk of damage from wind or other weather conditions. It is important to note that modern solar inverters often come with advanced tracking and monitoring technologies that can adapt to different panel angles and orientations. These features can optimize energy production by adjusting the inverter settings based on the real-time performance of the panels. Overall, while there are limitations on the angle of the solar panels, it is crucial to ensure that they are installed in a way that maximizes their exposure to sunlight throughout the day to achieve the highest energy production possible.
Q:What are the indicators of a faulty solar inverter?
Some indicators of a faulty solar inverter include a complete loss of power generation, inconsistent or fluctuating power output, unusual noises or smells coming from the inverter, error messages or warning lights on the display panel, and physical damage or overheating of the inverter unit.
Q:Are there any noise or sound considerations with a solar inverter?
Yes, there are generally no noise or sound considerations with a solar inverter. Solar inverters are designed to operate silently, without producing any noticeable noise or sound. This is because they use solid-state electronics, which do not have any moving parts that can generate noise.
Q:How does a solar inverter protect against overvoltage and overcurrent?
A solar inverter protects against overvoltage by continuously monitoring the voltage level of the solar panels. If the voltage exceeds a safe threshold, the inverter automatically limits the power output or shuts down temporarily to prevent damage to the system. Similarly, to protect against overcurrent, the inverter monitors the current flowing through the system. If the current exceeds a safe limit, the inverter adjusts the output power or shuts down to avoid overheating and potential electrical hazards.
Q:Can a solar inverter be used with different types of power control devices?
Yes, a solar inverter can be used with different types of power control devices. Solar inverters are designed to convert the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power various electrical devices. They can be integrated with different power control devices such as charge controllers, smart energy management systems, and battery storage systems to optimize the efficiency and performance of the solar power system.
Q:How does a solar inverter handle fluctuations in solar panel output due to temperature changes?
A solar inverter handles fluctuations in solar panel output due to temperature changes by employing a maximum power point tracking (MPPT) algorithm. This algorithm continuously monitors the output of the solar panels and adjusts the operating conditions of the inverter to extract the maximum power available. As temperature changes, the MPPT algorithm adapts the inverter's parameters to optimize the energy conversion process and ensure the highest possible efficiency. By dynamically adjusting the voltage and current levels, a solar inverter effectively mitigates the impact of temperature fluctuations on the solar panel's output.
Q:What is the difference between a centralized and decentralized solar inverter system?
A centralized solar inverter system refers to a setup where multiple solar panels are connected to a single inverter. In this system, all the panels are connected in series, and the combined DC (direct current) power generated by the panels is converted into AC (alternating current) power by the centralized inverter. On the other hand, a decentralized solar inverter system, also known as microinverters or power optimizers, involves each solar panel having its own dedicated inverter. In this system, each panel operates independently, converting its DC power into AC power directly at the panel level. The main difference between the two systems lies in their architecture and the way power conversion occurs. In a centralized system, the entire array's power output is dependent on the performance of a single inverter. If any one panel in the array underperforms due to shading or malfunction, it can significantly impact the overall system's performance. Additionally, the use of a single inverter can create limitations in terms of design flexibility and system scalability. In a decentralized system, each panel operates independently, allowing for greater flexibility and optimization. The individual inverters in a decentralized system can maximize the power output of each panel, regardless of shading or performance variations. This also means that the overall system performance is less impacted by the underperformance of a single panel. Moreover, decentralized systems offer greater scalability as additional panels can be easily added without the need for significant system redesign. Decentralized systems also provide enhanced monitoring capabilities, as each inverter can provide real-time data on individual panel performance. This allows for easier troubleshooting, maintenance, and identification of any issues within the solar array. In summary, while a centralized solar inverter system is a simpler and more cost-effective option, a decentralized system offers better optimization, scalability, monitoring, and performance reliability. The choice between the two systems depends on factors such as system size, shading conditions, budget, and desired level of control and flexibility.

1. Manufacturer Overview

Location Shenzhen,China
Year Established 2010
Annual Output Value 50 million USD
Main Markets Australia, Euro, America, China.
Company Certifications CE, VDE-AR-N4105, FCC,ETL,CEC,CEI 0-21,G83,G59,SAA,CGC

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port Shenzhen, Guangzhou, Hongkong
Export Percentage 60%
No.of Employees in Trade Department 260
Language Spoken: English, Chinese
b)Factory Information  
Factory Size: 500-1000
No. of Production Lines 8
Contract Manufacturing None
Product Price Range 300-40000 USD

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords