• Used in EAF as Charge Coke for for Foundry Plants with VM 2%max System 1
  • Used in EAF as Charge Coke for for Foundry Plants with VM 2%max System 2
Used in EAF as Charge Coke for for Foundry Plants with VM 2%max

Used in EAF as Charge Coke for for Foundry Plants with VM 2%max

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
21 m.t.
Supply Capability:
6000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Introduction:

Calcined anthracite can be called carbon additive, carbon raiser, recarburizer, injection coke, charging coke, gas calcined anthracite.

Carbon Additive/Calcined Anthracite Coal may substitute massively refinery coke or graphite. Meanwhile its cost is much less than the refinery coke and graphite. Carbon Additive is mainly used in electric steel ovens, water filtering, rust removal in shipbuilding and production of carbon material. 

 It has good characteristics with low ash, low resistivity, low sulphur, high carbon and high density. It is the best material for high quality carbon products. It is used as carbon additive in steel industry or fuel.

 Features:

Best quality Taixi anthracite as raw materials through high temperature calcined at 800-1200   by the DC electric calciner with results in eliminating the moisture and volatile matter from Anthracite efficiently, improving the density and the electric conductivity and strengthening the mechanical strength and anti-oxidation, It has good characteristics with low ash, low resistivity, low carbon and high density. It is the best material for high quality carbon products, it is used as carbon additive in steel industry or fuel.

Specifications:

PARAMETER   UNIT GUARANTEE VALUE

F.C.%

95MIN 

94MIN

93MIN

92MIN

90MIN

85MIN 

84MIN 

ASH %

4MAX

5MAX

6 MAX

6.5MAX

8.5MAX

12MAX

13MAX

V.M.%

1 MAX

1MAX

1.0MAX

1.5MAX 

1.5MAX

3 MAX

3 MAX

SULFUR %

0.3MAX

0.3MAX

0.3MAX

0.35MAX

0.35MAX

0.5MAX

0.5MAX

MOISTURE %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

1MAX

1MAX

 

 

Pictures

 

Used in EAF as Charge Coke for for Foundry Plants with VM 2%max

Used in EAF as Charge Coke for for Foundry Plants with VM 2%max

Used in EAF as Charge Coke for for Foundry Plants with VM 2%max

Used in EAF as Charge Coke for for Foundry Plants with VM 2%max

 

FAQ:

Packing:

(1). Waterproof jumbo bags: 800kgs~1100kgs/ bag according to different grain sizes;

(2). Waterproof PP woven bags / Paper bags: 5kg / 7.5kg / 12.5kg / 20kg / 25kg / 30kg / 50kg small bags;

(3). Small bags into jumbo bags: waterproof PP woven bags / paper bags in 800kg ~1100kg jumbo bags.

Payment terms
20% down payment and 80% against copy of B/L.

Workable LC at sight,

 

Q:There are ten carbon and oil Gulu chorus, carbon English Gollum and finally he said to sing, this is English this is the song of English is what?
It's BAD AND NITHTDuring Halloween last year, many people joined in the chorusThe English sounds are are, you, ready and where you goingBecause the pronunciation and intonation is very interesting, so has been Tucao
Q:What is the role of carbon in respiration?
The role of carbon in respiration is to serve as the primary fuel source. Carbon-containing molecules, such as glucose, are broken down during cellular respiration to release energy that can be utilized by the organism. Carbon atoms are ultimately converted into carbon dioxide, which is exhaled as a waste product.
Q:What are the consequences of increased carbon emissions on indigenous communities?
Increased carbon emissions have significant consequences on indigenous communities. Firstly, these communities often rely on the land and natural resources for their livelihoods, so environmental degradation caused by carbon emissions can directly impact their ability to hunt, fish, and gather food. Additionally, climate change resulting from carbon emissions leads to more frequent and intense natural disasters, such as hurricanes and droughts, which can destroy homes and infrastructure in indigenous communities. Moreover, the loss of traditional knowledge and cultural practices associated with the changing environment can have profound social and psychological impacts on indigenous peoples. Overall, increased carbon emissions exacerbate existing inequalities and vulnerabilities faced by indigenous communities, threatening their way of life, well-being, and resilience.
Q:What are the different types of carbon-based food additives?
Some examples of carbon-based food additives include caramel color, vegetable carbon (activated charcoal), and carbon black. These additives are used for various purposes such as coloring, flavor enhancement, and texture improvement in food products.
Q:What role does carbon play in photosynthesis?
Carbon plays a crucial role in photosynthesis as it is the primary element used by plants to produce organic compounds. During photosynthesis, plants absorb carbon dioxide from the atmosphere and use it to synthesize glucose, a simple sugar that serves as a building block for more complex carbohydrates, such as starch and cellulose. This process occurs in the chloroplasts of plant cells, specifically in the stroma of the chloroplast, where the enzyme RuBisCO catalyzes the fixation of carbon dioxide into an organic molecule called PGA (phosphoglycerate). Through a series of reactions known as the Calvin cycle, PGA is converted into glucose, which can be stored for energy or used for growth and reproduction. In summary, carbon is essential for photosynthesis as it provides the raw material necessary for plants to produce their own food and sustain life.
Q:How does carbon impact soil health?
The role of carbon in maintaining and improving soil health cannot be overstated. Carbon is a vital component of organic matter, which is crucial for fertile and productive soils. By decomposing plant and animal residues, carbon is introduced into the soil, resulting in better soil structure, increased water holding capacity, and improved nutrient availability. Soil structure is greatly influenced by carbon, as it binds with soil particles to form aggregates. These aggregates create pore spaces within the soil, allowing for improved aeration, water infiltration, and root penetration. The presence of these pore spaces encourages the growth of beneficial soil organisms like earthworms and microorganisms, which further contribute to soil health. In addition to enhancing soil structure, carbon also plays a critical role in improving the water holding capacity of soils. Organic matter, which is rich in carbon, acts like a sponge, holding moisture and preventing water runoff. This is especially important in regions with arid or drought-prone climates, where water scarcity is a concern. Increased water retention not only helps plants withstand dry periods but also reduces erosion and nutrient leaching. Furthermore, carbon is an essential nutrient for soil microbes. Microorganisms, such as bacteria and fungi, break down organic matter and release nutrients that plants require for growth. Carbon-rich soils provide an ideal environment for these microorganisms to thrive, resulting in greater nutrient availability for plants. Additionally, as microorganisms decompose organic matter, they release beneficial substances like enzymes and hormones that support plant growth and overall soil health. To summarize, the impact of carbon on soil health cannot be ignored. It improves soil structure, enhances water holding capacity, and promotes nutrient availability. Therefore, it is crucial to manage and increase carbon content in soils through practices like incorporating organic amendments, implementing cover cropping, and minimizing tillage. These actions can significantly benefit agricultural productivity and sustainability.
Q:What is the carbon content of 45# steel?
The main component of 45# steel is Fe (Tie Yuansu), and contains the following elements:C:0.42~0.50%Si:0.17~0.37%Mn:0.50~0.80%P: = 0.035%S: = 0.035%Cr: = 0.25%Ni: = 0.25%Cu: = 0.25%Density 7.85g/cm3, elastic modulus 210GPa, Poisson's ratio 0.269.
Q:What are the applications of carbon nanowires?
Carbon nanowires have numerous applications in various fields. They are used in electronics for creating high-performance transistors, sensors, and conductive electrodes. Their exceptional mechanical properties make them suitable for reinforcement materials in composites, such as lightweight and strong materials for aerospace and automotive industries. Carbon nanowires also find applications in energy storage devices like batteries and supercapacitors, as well as in biomedical engineering for drug delivery systems and tissue engineering scaffolds.
Q:How are carbon fibers produced?
Carbon fibers are created using a multi-step process known as carbonization. To begin, a precursor material, typically a polymer-based substance like polyacrylonitrile (PAN), rayon, or pitch, is utilized. The initial step entails spinning the precursor material into lengthy, thin fibers. This can be accomplished through different methods, such as melt spinning, dry spinning, or wet spinning, depending on the specific precursor employed. Once the fibers are formed, they undergo a stabilization process. This involves subjecting the fibers to heat in the presence of oxygen at a relatively low temperature, usually around 200-300 degrees Celsius. Stabilization serves to eliminate any volatile components from the fibers and align the molecular structure in a manner that enhances its resistance to heat and strength. Following stabilization, the fibers are exposed to high-temperature treatment called carbonization. This process occurs in an oxygen-deprived furnace, typically at temperatures exceeding 1000 degrees Celsius. During carbonization, the fibers are heated to a point where a majority of the non-carbon atoms are expelled, resulting in a highly pure carbon structure. The final step in carbon fiber production involves surface treatment. This entails the application of a coating or treatment to enhance the fibers' bonding properties and adhesion with other materials. Surface treatment can be achieved through various methods, including sizing, coating, or plasma treatment. In summary, the production of carbon fibers combines spinning, stabilization, carbonization, and surface treatment processes to yield fibers with exceptional strength, stiffness, and lightness. These properties make carbon fibers highly sought after in diverse industries, including aerospace, automotive, sports, and construction.
Q:I bought a grill myself and went to barbecue with my friends the day after tomorrow, but I can't ignite the carbon. What should I do?
Is it barbecue in the field? If so, there are many ways to ignite carbon in the wild.The simplest, affordable way is to pile up the fire, and then use the charcoal on it, charcoal will be used after burning.At home, it is placed directly on the gas range, ignited.Charcoal direct ignition is not convenient, it is best to use other things as medium ignition.Be careful when you're in the barbecue. Watch out for the fire.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products