• Steel Rebar, Deformed Steel Bar,Iron Rods For Construction/Concrete/Building System 1
  • Steel Rebar, Deformed Steel Bar,Iron Rods For Construction/Concrete/Building System 2
  • Steel Rebar, Deformed Steel Bar,Iron Rods For Construction/Concrete/Building System 3
Steel Rebar, Deformed Steel Bar,Iron Rods For Construction/Concrete/Building

Steel Rebar, Deformed Steel Bar,Iron Rods For Construction/Concrete/Building

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
1000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing


Specifications

deformed steel bar grade 40 
material: HRB400, BS4449 GR460B 
size: 8-36mmx12m. 
short delivery time by bulk or container

  deformed steel bar grade 40

material: HRB400, BS4449 GR460B
size: 8-36mmx12m. 
short delivery time with bulk or container

packing: Mill standard export packing in bundles/coil,  around 2tons/bundle.

country of Origin: China

delivery Time: Within a 35 days

Shipment: by bulk vessel or by container

Leading goods: 

 

section steel:angles,channels,I-beam,H-beam;

 

coils:cold/hot rolled coils,PPGI,galvanized coils,plate,checkered plate,cutting steel plate,steel strip;

 

wire rod:steel wire,deformed wire,bar;

 

pipe:seamless pipe,rectangular pipe,welded pipe,spiral welded pipe,pipe fittings;

 

stainless steel:steel sheets,stainless steel strips,stainless bar,stainless tube;

 

special:weathering steel,shipbuilding steel;

 

construction steel:C-channel,Z-channel,T-bar,high-speed divider plate,corrugated steel plate,steel grating.

 

Advantage:

We are the spot supplier, Six huge warehouses which can hold 20,000 MT goods.It makes the cost lower than others,we can provide the competitive price for you.

Delivery time:

Normal sizes can be provided in 7days, the others should be ready in 30---45 days.

Further treatment:

 We can offer cutting,painting,drilling holes,bending,threading, welding,galvanization,packing etc.

 Security interest: 

We have already passed the ISO9001, BV and SGS authentication which makes the quality secured.

If you have the interest in any of the products we can provided, pls don't hesitate to connect with me. Looking forward to cooperate with you.


FAQ of Steel Deformed Bar

1. More than 10 years experience in this industry
2. 100,000 tons exporting per month
3. Professional foreign trade tea
4. OEM&ODM capacity
5. High quality assured & competitive price
6. Try our best to meet your needs & save your budget
7. Very popular in Southeast Asia, Africa, Mid-East and South America etc.
8. VIP membership system, first time customers and long-term cooperation customers can get extra discount on some products.


Q:Can steel rebars be used in structures with limited construction expertise?
Although limited construction expertise is sufficient for using steel rebars in structures, it is crucial to adhere to proper guidelines and possess a fundamental understanding of construction principles. Rebars are commonly employed to enhance the strength and durability of concrete structures. However, their accurate placement and installation play a pivotal role in guaranteeing the structural integrity of the building. While it is feasible to utilize steel rebars without extensive construction expertise, it is highly advisable to seek guidance from a professional engineer or a qualified construction expert. They can offer valuable insights regarding the suitable positioning, size, and spacing of rebars, as well as the necessary concrete mix design and curing techniques. Furthermore, it is essential to comply with local building codes and regulations, as they stipulate the minimum standards for structural safety. These codes frequently include specific requirements for the utilization of rebars in construction. By adhering to these guidelines and seeking professional advice, even individuals with limited construction expertise can effectively employ steel rebars and ensure the structural stability of their buildings.
Q:What are the different types of steel rebars?
There are several types of steel rebars used in construction, including conventional carbon steel rebars, epoxy-coated rebars for corrosion resistance, stainless steel rebars for high strength and corrosion resistance, and galvanized rebars for added protection against corrosion.
Q:How do steel rebars affect the overall thermal stability of a structure?
The thermal conductivity properties of steel rebars can have a significant impact on the overall thermal stability of a structure. Thermal stability refers to a structure's ability to withstand temperature changes without deformation or damage. Steel rebars possess high thermal conductivity, enabling efficient heat transfer throughout a structure. This characteristic can have positive and negative effects on thermal stability. On the positive side, steel rebars aid in dissipating heat from the structure, preventing heat concentration in specific areas. This prevents localized thermal expansion, which could result in cracks and structural failures. By evenly distributing heat, steel rebars enhance the overall thermal stability. However, steel rebars can also transfer heat to colder areas of the structure, creating thermal gradients. This can cause differential expansion and contraction, leading to stress and potential damage. Additionally, during fire incidents, steel rebars can rapidly heat up and transfer heat to the surrounding concrete, compromising the structure's stability. To mitigate these potential negative effects, engineers and architects must carefully consider the placement, spacing, and design of steel rebars. Proper reinforcement layout and the use of insulation materials can enhance thermal stability. Furthermore, incorporating fire-resistant coatings or insulation around rebars can minimize heat transfer during fires. In conclusion, steel rebars significantly impact the thermal stability of structures. While their high thermal conductivity aids in heat dissipation, it can also lead to thermal gradients and potential damage. By carefully considering design and implementing appropriate measures, the negative effects of steel rebars on thermal stability can be minimized, ensuring the long-term durability and safety of the structure.
Q:What are the guidelines for ensuring proper bond between steel rebars and concrete?
The guidelines for ensuring proper bond between steel rebars and concrete include ensuring clean and rust-free rebars, providing adequate concrete cover, using proper bar spacing and diameter, using mechanical bond enhancers if necessary, and properly compacting the concrete around the rebars. Additionally, proper curing and hydration of the concrete are essential for achieving a strong bond between the rebars and concrete.
Q:How do steel rebars affect the overall crack resistance of concrete structures?
The crack resistance of concrete structures is greatly improved by steel rebars, which have a crucial role to play. When embedded in concrete, rebars provide reinforcement and boost the tensile strength of the structure. While concrete is naturally strong in compression, it is weak in tension, and rebars help overcome this weakness by absorbing the tensile forces that may result in cracks. The inclusion of rebars in concrete structures allows for stress redistribution, thereby preventing cracks from spreading. As concrete shrinks or experiences external loads, rebars act as a reinforcement grid, effectively resisting the formation and expansion of cracks. By absorbing and dispersing the tensile stresses, rebars ensure that the concrete remains intact and can withstand heavier loads without significant cracking. Furthermore, steel rebars contribute to the overall durability of concrete structures. When rebars corrode due to exposure to moisture or other environmental factors, they can increase in volume, resulting in internal pressure and potential cracking of the concrete. However, the use of corrosion-resistant rebars, such as epoxy-coated or stainless steel rebars, can greatly reduce this risk and enhance the crack resistance of the structure. To summarize, steel rebars enhance the crack resistance of concrete structures by providing reinforcement, increasing tensile strength, redistributing stress, and preventing crack propagation. Their presence guarantees that the structure can withstand various types of loads and environmental conditions, ultimately improving the strength and durability of the concrete.
Q:Can steel rebars be used in the construction of sports stadiums or arenas?
Yes, steel rebars can certainly be used in the construction of sports stadiums or arenas. Steel rebars are commonly utilized as reinforcement in concrete structures, and their high tensile strength and durability make them well-suited for large-scale projects like sports stadiums. The rebars provide additional support and stability to the concrete, helping to withstand the immense loads and forces that stadiums and arenas may experience during events. Additionally, steel rebars can be easily shaped and bent to fit the specific needs and design requirements of the structure, making them a versatile choice for construction purposes.
Q:How do steel rebars help in reducing construction time?
Steel rebars contribute to the reduction of construction time in several ways. Firstly, they enhance the strength and durability of concrete structures, enabling builders to employ quicker construction techniques. This obviates the necessity for slower and more time-consuming methods as the rebars provide sufficient support for the structure's weight. Secondly, the reinforcement of concrete with steel rebars enhances the overall structural integrity of the building. Consequently, builders can employ thinner concrete sections without compromising the structure's strength. These thinner sections require less material and can be poured and cured more rapidly and easily, thus saving construction time. Thirdly, the installation of steel rebars is a speedy process due to their easy handling and installation characteristics. They can be conveniently cut and bent to fit the desired shape and size, facilitating efficient installation. Consequently, the requirement for complicated and time-consuming formwork is eliminated, resulting in a reduction in construction time. Fourthly, steel rebars offer design and construction flexibility, enabling the utilization of innovative and efficient building techniques. They can be utilized in a variety of applications, including beams, columns, and slabs, granting architects and engineers the freedom to design structures that can be rapidly and efficiently constructed. Lastly, steel rebars provide additional resistance to natural disasters such as seismic activity and extreme weather conditions. By reinforcing concrete with rebars, structures become more resilient, reducing the risk of damage and expediting the construction process. This is particularly crucial in areas that are prone to earthquakes or adverse weather conditions. In conclusion, steel rebars play a pivotal role in reducing construction time by providing strength, durability, flexibility, ease of installation, and the ability to reinforce concrete structures. These qualities facilitate faster construction methods and efficient use of materials.
Q:What are the common surface patterns for steel rebars?
Plain, deformed, and ribbed patterns are the common surface patterns for steel rebars. Plain rebars have a smooth surface and no patterns or indentations. They are used in applications where bendability or weldability is important, such as in reinforced concrete structures. On the other hand, deformed rebars have patterns or indentations on their surface, such as ribs, humps, or indentations. These patterns enhance bonding with the surrounding concrete and improve the grip between the rebar and concrete. This ensures better stress transfer and prevents slippage. Deformed rebars are widely used in construction projects, particularly in areas that require high tensile strength and bond strength. Ribbed rebars, a specific type of deformed rebar, have continuous longitudinal ribs along their length. These evenly spaced ribs provide additional anchorage and bond strength with the concrete. Ribbed rebars are commonly used in applications that require a higher level of bond strength, such as in seismic zones or structures subjected to heavy loads. In conclusion, the choice of surface pattern for steel rebars depends on the specific requirements of the construction project and the desired performance characteristics.
Q:How to calculate the theoretical elongation of finishing thread steel?
Rebar is a kind of special bar with discontinuous external thread. The steel bar can be connected or anchored at any section with a connector or anchor with internal thread.
Q:How do steel rebars prevent concrete structures from spalling?
Steel rebars prevent concrete structures from spalling by providing reinforcement and increasing the tensile strength of the structure. When concrete undergoes temperature changes or experiences external forces, it tends to expand or contract, leading to cracking and spalling. However, with the presence of steel rebars, these forces are distributed throughout the structure, preventing the concrete from cracking and breaking apart. The rebars act as a support system, holding the concrete together and ensuring its stability and durability, thus preventing spalling.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords