• HRB500 Deformed Steel Bar System 1
  • HRB500 Deformed Steel Bar System 2
  • HRB500 Deformed Steel Bar System 3
HRB500 Deformed Steel Bar

HRB500 Deformed Steel Bar

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
25MT m.t.
Supply Capability:
800000/YEAR m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications of HRB500 Deformed Steel Bar:

Standard

GB

HRB500

Diameter

6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,

22mm,25mm,28mm,32mm,36mm,40mm,50mm

Length

6M, 9M,12M or as required

Payment term

TT or L/C

Application

mainly used in construction industry to reinforce concrete structures and so on

Quality

First quality, the goods are from Chinese big manufacturers.

Type

Hot rolled deformed steel bar

Brand name

DRAGON

Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)

Grade

Technical data of the original chemical composition (%) 

C

Mn

Si

S

P

V

HRB500

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.08-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥500

≥630

≥12

 

Theoretical weight and section area of each diameter as below for your information: 

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m bar(kg)

6

28.27

0.222

2.664

8

50.27

0.395

4.74

10

78.54

0.617

7.404

12

113.1

0.888

10.656

14

153.9

1.21

14.52

16

201.1

1.58

18.96

18

254.5

2.00

24

20

314.2

2.47

29.64

22

380.1

2.98

35.76

25

490.9

3.85

46.2

28

615.8

4.83

57.96

32

804.2

6.31

75.72

36

1018

7.99

98.88

40

1257

9.87

118.44

50

1964

15.42

185.04

 

Usage and Applications of HRB500 Deformed Steel Bar:

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

 

Packaging & Delivery of HRB500 Deformed Steel Bar:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF

 

Deformed Steel Bar in stock

Deformed Steel Bar in stock

 

Deformed Steel Bar in testing

Deformed Steel Bar in testing

 

Note:

1. Our products are produced according to national standard (GB), if not, supply according to national standards (GB) or agreement as customer required.

2. Other Grade and Standard Deformed Steel Bar we can supply:

    Grade: GR40/GR60, G460B/B500A/B500B/B500C,BST500S

    Standard: ASTM, BS, DIN

    The Minimum Order Quantity of these products is high, and need to be confirmed.

3. We can not only supply Deformed Steel Bar; if you need anything about building materials, please contact us for further information.

4. Please send us your detail specifications when inquire. We will reply to you as soon as possible. We sincerely hope we can establish a long stable business relationship.

 

 

Q:How do steel rebars contribute to the strength of concrete?
The strength of concrete is enhanced in various ways by steel rebars. Firstly, they increase the tensile strength of concrete, which is otherwise relatively low. Although concrete is excellent at withstanding compression, it is weak when it comes to resisting tension. This is where steel rebars come into play. By embedding them within the concrete, they provide extra strength and help prevent cracks from forming and spreading. Secondly, the bond between concrete and the reinforcement material is improved by steel rebars. The ribbed surface of the rebars creates a better grip with the concrete, ensuring a stronger bond. This bond is crucial as it allows the concrete and steel to work together, distributing the loads and minimizing the risk of structural failure. Furthermore, the overall durability and longevity of concrete structures are increased by steel rebars. They are resistant to corrosion, which is a major concern in coastal or high humidity areas. The corrosion resistance of rebars ensures that the concrete remains structurally sound for a longer period, reducing maintenance costs and extending the lifespan of the structure. In addition to their strength-enhancing abilities, steel rebars also contribute to the structural stability of concrete elements. They help reinforce critical areas such as beams, columns, and foundations, where high loads and forces are present. By providing additional support and reinforcement, steel rebars help prevent excessive deflection, bending, or failure of these elements under heavy loads. To summarize, steel rebars are crucial in enhancing the strength of concrete structures by improving tensile strength, bond strength, durability, and overall structural stability. Incorporating them into concrete elements is essential to ensure the longevity and safety of various construction projects.
Q:How do steel rebars affect the overall structural stability of a building?
The overall structural stability of a building is greatly improved with the use of steel rebars. These reinforcing bars are commonly employed in concrete structures to provide additional strength and support to the building's framework. By embedding steel rebars within the concrete, the building's overall structural integrity and load-bearing capacity are significantly heightened. The main purpose of steel rebars is to reinforce and strengthen concrete, which is susceptible to tension forces. Concrete possesses excellent compressive strength but has limited resistance to tensile forces. Steel rebars, which are highly tensile in nature, counteract these tension forces and prevent the concrete from cracking or failing when under stress. Rebars are strategically placed within the concrete to more efficiently distribute and transfer loads. This redistribution of forces reduces the likelihood of localized structural failures and ensures that the building can withstand external forces such as wind, seismic activity, or heavy loads. Furthermore, steel rebars also improve the durability and longevity of a building. By reinforcing the concrete, rebars help minimize cracking and prevent the propagation of cracks. This is particularly important in areas prone to seismic activity since rebars can absorb and dissipate energy generated during an earthquake, reducing the risk of collapse. In addition to their role in ensuring structural stability, steel rebars also offer design flexibility. They can be shaped and bent into various configurations, enabling architects and engineers to create complex and innovative structures effortlessly. This design flexibility not only enhances the aesthetics of the building but also allows for the construction of unique architectural features that would otherwise be difficult or impossible to achieve. In summary, steel rebars are vital for enhancing the overall structural stability of a building. By reinforcing the concrete, they increase its load-bearing capacity, improve resistance to tensile forces, and more efficiently distribute loads. Their presence significantly reduces the risk of structural failure, enhances durability, and allows for greater design flexibility.
Q:How do steel rebars affect the durability of concrete structures?
The durability of concrete structures is significantly improved by the use of steel rebars. By reinforcing the concrete, rebars effectively boost its tensile strength, which is otherwise lower compared to its compressive strength. This is crucial because concrete is excellent at resisting compressive forces, but it is weak when it comes to tension or bending forces. When external forces like vibrations, wind, or earthquakes act upon concrete structures, the rebars absorb the tension and bending forces, preventing the concrete from cracking or collapsing. This ensures that the structure remains intact and stable. Without steel rebars, concrete structures would be more susceptible to damage and failure under such circumstances. In addition to that, the presence of steel rebars also enhances the durability of concrete structures by preventing corrosion. When embedded in concrete, rebars act as a protective barrier against moisture and oxygen, which are the primary causes of steel corrosion. By blocking the penetration of these harmful elements, rebars significantly extend the lifespan of the concrete structure. Moreover, steel rebars provide dimensional stability to concrete structures. As concrete tends to shrink and expand due to temperature changes and moisture variations, the presence of rebars counters these movements. This prevents the formation of cracks and ensures the structural integrity of the concrete. To sum it up, steel rebars play a vital role in greatly enhancing the durability of concrete structures. They increase the tensile strength, prevent cracking and collapse, protect against corrosion, and provide dimensional stability. Their presence is essential for constructing long-lasting and reliable concrete structures that can withstand various external forces and environmental conditions.
Q:What is the process of inspecting steel rebars on-site?
The quality and adherence to specifications of steel rebars on-site are ensured through a series of steps in the inspection process. Firstly, a visual inspection is conducted to identify any visible defects or damage, such as rust, cracks, bends, or improper dimensions. Immediate attention is given to any issues found. Next, accurate measurements are taken using tools like calipers or measuring tapes. The length, diameter, and shape of each rebar are compared against the project specifications to ensure they meet the required dimensions. For certain projects, chemical analysis of the steel rebars may be necessary to confirm their composition and strength. Samples are taken from different batches and sent to a lab for testing, with the results determining compliance with standards. Non-Destructive Testing (NDT) techniques are utilized to evaluate the internal integrity of the rebars without causing damage. Ultrasonic testing, magnetic particle inspection, and radiography are employed to detect hidden defects like cracks, voids, or inclusions. If welding is involved, the inspector checks the welds for proper penetration, alignment, and quality. This guarantees the strength and integrity of the joint. Throughout the inspection process, detailed records are maintained. These records include information about the inspections conducted, measurements taken, test results, and identified defects. They serve as evidence of compliance and can be referred to in case of disputes or future reference. Once the inspection is complete, a detailed report is prepared summarizing the findings. This report is shared with the project management team, engineers, and other relevant stakeholders. It highlights any non-compliance, defects, or areas that require attention. In conclusion, the on-site inspection of steel rebars is a comprehensive and systematic approach that ensures their quality, integrity, and compliance with project specifications and industry standards.
Q:What are the different shapes of steel rebars?
Steel rebars, also known as reinforcing bars, come in various shapes, including round, square, and deformed. The round rebar is the most common type, while square rebars provide better grip due to their flat sides. Deformed rebars have ridges or indentations, enhancing their bond with concrete and improving structural integrity.
Q:What is the impact of steel rebars on the construction timeline?
Steel rebars have a significant impact on the construction timeline. Rebars are essential components in reinforced concrete structures, providing strength and durability to the overall construction. Their proper installation and integration into the concrete elements are crucial for ensuring the structural integrity of the building. Firstly, the availability and timely delivery of steel rebars affect the construction timeline. If there are delays in the procurement or delivery of rebars, it can cause a ripple effect on the entire project schedule. Construction activities that require the presence of rebars, such as formwork, concrete pouring, and curing, will be postponed or slowed down, resulting in a potential delay in the overall construction timeline. Secondly, the installation of rebars is a meticulous and time-consuming process. Construction teams need to accurately place and secure the rebars according to the design specifications and engineering drawings. This process involves cutting, bending, and tying rebars to create the required reinforced structures. Any errors or rework required during this phase can lead to additional time being spent, potentially causing delays in subsequent construction activities. Moreover, the coordination between different construction trades is crucial when working with rebars. For instance, the electrical and plumbing systems need to be properly integrated with the rebars before the concrete is poured. Any miscommunication or lack of coordination can lead to conflicts and rework, resulting in delays in the construction timeline. Additionally, the quality of rebars plays a vital role in the construction timeline. Poor quality or defective rebars can lead to safety concerns and potential structural issues. In such cases, the construction timeline may be impacted as remedial actions, such as removing and replacing the faulty rebars, need to be taken, causing delays and additional costs. In summary, steel rebars have a significant impact on the construction timeline. Their availability, timely delivery, accurate installation, coordination with other trades, and quality are all factors that can influence the overall progress of a construction project. Proper planning, communication, and monitoring are crucial to ensure that rebars are effectively incorporated into the construction process, minimizing any potential delays and keeping the project on schedule.
Q:How are steel rebars protected during transportation?
Steel rebars are typically protected during transportation by being bundled together and secured with steel straps or wire ties. They may also be covered with a protective coating or wrapped in plastic to prevent corrosion and damage from moisture or other external elements. Additionally, rebars are often stored and transported on pallets or in specialized containers to ensure safe handling and prevent any bending or distortion.
Q:Can steel rebars be used in the construction of hospitals?
Yes, steel rebars can be used in the construction of hospitals. Steel rebars are commonly used in reinforced concrete structures to provide strength and stability. In hospital construction, where safety and durability are crucial, steel rebars are essential for reinforcing concrete foundations, columns, beams, and other structural elements. They help ensure the structural integrity of the hospital building, making it resilient and capable of withstanding various loads and potential hazards.
Q:What is the role of steel rebars in multi-story building construction?
The role of steel rebars in multi-story building construction is to provide reinforcement and strength to concrete structures. Rebars are embedded within the concrete to absorb tensile forces and prevent cracking or structural failure. They enhance the structural integrity and durability of the building, enabling it to withstand various external and internal forces such as earthquakes, wind loads, and heavy loads.
Q:How do steel rebars affect the maintenance requirements of a structure?
The maintenance requirements of a structure are significantly influenced by steel rebars, also known as reinforcing bars. These bars, which are constructed from steel, are embedded in concrete to provide strength and durability to the structure. Enhancing the overall structural integrity of a building or infrastructure is one of the primary ways in which steel rebars impact maintenance. The presence of rebars greatly increases the load-bearing capacity of concrete, enabling it to withstand external forces such as wind, earthquakes, and heavy loads. This reinforcement helps to prevent cracks, deformations, and structural failures, ultimately reducing the maintenance needs of a structure. Moreover, steel rebars also contribute to the longevity of a structure. By offering tensile strength to concrete, they shield it from the negative effects of shrinkage and expansion caused by temperature fluctuations. These rebars act as a framework that holds the concrete together, minimizing the risk of cracks and ensuring the structural stability of the building over time. As a result, the maintenance requirements are reduced as the structure remains intact and resilient against environmental factors. Nevertheless, it is important to acknowledge that steel rebars can also impact maintenance requirements in specific situations. If the rebars are not designed, installed, or protected properly, they can be vulnerable to corrosion. Corrosion occurs when moisture and oxygen penetrate the concrete and reach the steel, causing it to rust. Rusting rebars can lead to the expansion of steel, creating internal pressure that can result in cracking and spalling of the concrete. Consequently, regular inspections, maintenance, and protection measures such as epoxy coating or cathodic protection systems are necessary to prevent corrosion and ensure the longevity of the structure. In conclusion, steel rebars have a positive impact on the maintenance requirements of a structure by enhancing its strength, durability, and longevity. They decrease the need for repairs and maintenance caused by structural failures and increase the overall resilience against external forces. However, proper design, installation, and protection of rebars are crucial to avoid corrosion-related issues that could increase maintenance needs.
Dragon is specialized in the production and sales of deformed bar and high speed wire rod. The annual production capacity is 1 million mtons. We have got the KS certificate in 2010. And now our product has been sold to many countries and obtained the customers approval.

1. Manufacturer Overview

Location Hebei, China
Year Established 2002
Annual Output Value Above US$ 400 Million
Main Markets South Asia; Middle East;Southeast Aisa
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port Tianjin
Export Percentage 60%-80%
No.of Employees in Trade Department 11-20 People
Language Spoken: English; Chinese
b)Factory Information  
Factory Size: Above 100,000 square meters
No. of Production Lines 2
Contract Manufacturing OEM service offered
Product Price Range average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords