• Solar Inverter and Charge Controller - Grid Tied 3-Phase CNBM-12000UE System 1
  • Solar Inverter and Charge Controller - Grid Tied 3-Phase CNBM-12000UE System 2
  • Solar Inverter and Charge Controller - Grid Tied 3-Phase CNBM-12000UE System 3
Solar Inverter and Charge Controller - Grid Tied 3-Phase CNBM-12000UE

Solar Inverter and Charge Controller - Grid Tied 3-Phase CNBM-12000UE

Ref Price:
get latest price
Loading Port:
NanJing
Payment Terms:
TT
Min Order Qty:
1 set set
Supply Capability:
1000 per month set/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Features of Grid Tied Solar Inverter 3-Phase CNBM-12000UE

With a R&D team more than 100 engineers,40% of the staff, who has been deeply engaged in the photovoltaic industry for 10 years, CNBM takes the mission to increase the inverter availability and efficiency, putting continuous innovation to make CNBM inverter easier for installation and operation, and more cost-effective for solar plant construction. The full range of CNBM single phase inverters has received VDE, CE, G83/1, G59/2, ENEL2010, VDE4105, C10/C11, AS4777 etc.

The Grid Connected Solar Inverter we can offer is 1.5kw to 20kw.

Introduction of Grid Tied Solar Inverter 3-Phase CNBM-12000UE

Maximum efficiency of 97.8% and wide input voltage range
Integrated DC switch-disconnected
MTL-String
Sound control
Bluetooth/RF technology /Wi-Fi
Transformerless GT topology
5 years warranty (10 years as optional)

Technical data of Grid Tied Solar Inverter 3-Phase CNBM-12000UE

Model

CNBM-10000UE

CNBM-12000UE

Input data (DC)

 

 

Max. DC power

10500W

12500W

Max. DC voltage

1000V

1000V

Start voltage

350V

350V

PV voltage range

180V-1000V

180V-1000V

Max. input current

15A

17A

Number of MPP trackers /strings per MPP tracker

2/2

2/2

Output (AC)

 

Rated AC output power

10000W

12000W

Max. AC power

10000VA

12000VA

Max. output current

16A

19A

Power factor

1

1

THDI

<3%

<3%

AC connection

Three phase

Three phase

Efficiency

 

Max. efficiency

98%

98%

Euro weighted efficiency

97.5%

97.5%

MPPT efficiency

99.5%

99.5%

Protection devices

 

Output over voltage protection-varistor

yes

yes

Ground fault monitoring

yes

yes

Grid monitoring

yes

yes

General Data

 

Dimensions (W / H / D) in mm

740/440/235

740/440/235

Weight

41KG

41KG

Operating temperature range

–25°C ... +60°C

–25°C ... +60°C

Altitude

2000m(6560ft) without derating

Self-Consumption night

< 0.5 W

< 0.5 W

Topology

Transformerless

Cooling concept

Natural

Natural

Environmental Protection Rating

IP65

IP65

Features

 

DC connection

H4/MC4(opt)

H4/MC4(opt)

Display

LCD

LCD

Interfaces: RS485/RS232/Bluetooth / RF/Zigbee/Wifi

yes/yes/opt/opt/opt

Warranty: 5 years / 10 years

yes /opt

Certificates and approvals

CEVDE 0126-1-1DK5940G83/1-1G59/2RD1663EN50438

VDE-AR-N4105CEI-021IEC-62109ENEL-Guide

Grid Tied Solar Inverter 3-Phase CNBM-12000UE is simple national setting of line supply monitoring, Easy country configuration, with Multi-language,display, currently available for most of the countries over the world.With technical creativity and scientific management, the factory established first class R&D and test centers, as well as management and R&D teams comprising of PhDs and masters with overseas qualification.

Figure 1 the application of Grid Tied Solar Inverter 3-Phase CNBM-12000UE

 Grid Tied Solar Inverter 3-Phase CNBM-1200UE

Figure 2 The Stock of Grid Tied Solar Inverter 3-Phase CNBM-12000UE

 

 Grid Tied Solar Inverter 3-Phase CNBM-1200UE

Q: How does a solar inverter affect the overall system cost?
A solar inverter can have a significant impact on the overall system cost. While it is a crucial component that converts DC power generated by solar panels into AC power for use in homes or businesses, it also adds to the total expenses of installing a solar system. The cost of a solar inverter depends on factors such as its capacity, efficiency, and features. Higher capacity or more advanced inverters tend to be more expensive. However, investing in a high-quality inverter can improve the overall efficiency and performance of the solar system, potentially offsetting the additional cost in the long run.
Q: Can a solar inverter be used in a ground-mounted solar tracking system?
Yes, a solar inverter can be used in a ground-mounted solar tracking system. The solar inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power electrical devices or be fed back into the grid. Whether the solar panels are fixed or mounted on a tracking system, the inverter's function remains the same.
Q: How does a solar inverter handle voltage drop?
A solar inverter handles voltage drop by continuously monitoring the voltage levels from the solar panels. If it detects a drop in voltage, it adjusts its internal voltage regulation mechanisms to maintain a stable output voltage. This ensures that the inverter can efficiently convert the incoming DC power from the solar panels into usable AC power without any significant loss or disruption caused by voltage fluctuations.
Q: Can a solar inverter be used in systems with multiple solar arrays?
Yes, a solar inverter can be used in systems with multiple solar arrays. A solar inverter is designed to convert the direct current (DC) produced by solar panels into usable alternating current (AC) for powering electrical devices or feeding back into the grid. It can be connected to multiple solar arrays in parallel or series to increase the overall power output of the system. However, it is important to ensure that the inverter is properly sized and matched to the combined capacity of all the solar arrays to ensure optimal performance and efficiency.
Q: Do I need a special inverter for a battery storage system?
Yes, a special inverter is needed for a battery storage system. Unlike a regular inverter that converts DC power from solar panels into AC power for immediate use, a battery storage system requires an inverter that can not only convert DC power to AC power but also manage the charging and discharging of the batteries efficiently. This special inverter is designed to work seamlessly with the battery storage system, ensuring optimal performance and maximizing the utilization of stored energy.
Q: What is the role of a solar inverter in a solar-powered electric vehicle charging station?
The role of a solar inverter in a solar-powered electric vehicle charging station is to convert the direct current (DC) produced by the solar panels into alternating current (AC) that can be used to charge electric vehicles. The inverter ensures that the electricity generated by the solar panels is compatible with the charging station and the electric vehicle's charging requirements.
Q: Can a solar inverter be used with a solar-powered disaster relief system?
Yes, a solar inverter can be used with a solar-powered disaster relief system. Solar inverters are essential components of solar power systems as they convert the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power various electrical devices and appliances. In the context of a disaster relief system, a solar inverter would be necessary to convert the DC power generated by the solar panels into usable AC power for charging batteries, operating equipment, and providing electricity to support emergency response efforts.
Q: Can a solar inverter be used with different solar panel brands?
Yes, a solar inverter can be used with different solar panel brands as long as they have compatible voltage and current ratings. However, it is recommended to consult the manufacturer's specifications and guidelines to ensure optimal performance and compatibility.
Q: How is a solar inverter connected to the solar panels?
A solar inverter is connected to solar panels through a direct current (DC) input from the panels, which is then converted into alternating current (AC) output by the inverter.
Q: What is the maximum input voltage that a solar inverter can handle?
The maximum input voltage that a solar inverter can handle varies depending on the specific model and manufacturer. However, in general, most solar inverters can handle input voltages in the range of 150 to 600 volts DC.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords