• SD390 Steel Rebar with JIS Standard System 1
  • SD390 Steel Rebar with JIS Standard System 2
  • SD390 Steel Rebar with JIS Standard System 3
  • SD390 Steel Rebar with JIS Standard System 4
  • SD390 Steel Rebar with JIS Standard System 5
  • SD390 Steel Rebar with JIS Standard System 6
SD390 Steel Rebar with JIS Standard

SD390 Steel Rebar with JIS Standard

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
160 m.t.
Supply Capability:
500000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Carbon Steel
Shape:
Steel Round Bar

SD390 Steel Rebar with JIS Standard


Description of SD390 Steel Rebar with JIS Standard

1, Diameter: 5.5mm-10mm SD390 Steel Rebar with JIS Standard

                       10m- 40mm SD390 Steel Rebar with JIS Standard

2, Length:  6m, 9m, 12m or customized

3, Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN

                    OEM technology - send detailed technical parameters for accurate quotation.

2, Produce Process: smelt iron - EAF smelt billet - ESR smelt billet - 

                                  hot rolled or forged to get the steel round bar and plate

3, Heat Treatment: annealing, normalizing, tempering, quenching

4, Surface Treatment: Black

5, Quality Assurance: We accept third party inspection for all orders. 

     You can ask testing organizations such as SGS, BV, etc. to test our products before shipping.

 

Chemical Composition of SD390 Steel Rebar with JIS Standard

Grade

Technical data of the original chemical composition(%)

Reinforcing steel bar HRB335

C

Mn

Si

S

P

B

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 335

≥490

≥16

Reinforcing steel bar HRB400

C

Mn

Si

S

P

B

≤0.25

≤0.16

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 400

≥ 570

≥ 14


Products Show of SD390 Steel Rebar with JIS Standard

Astm 615 Bs4449 B500B Deformed Steel Rebars



Company Information

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Astm 615 Bs4449 B500B Deformed Steel RebarsAstm 615 Bs4449 B500B Deformed Steel Rebars 


F A Q

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q:What are the different forms of special steel?
There are several different forms of special steel, including stainless steel, tool steel, high-speed steel, alloy steel, and carbon steel. Each form has its own unique properties and characteristics that make it suitable for specific applications.
Q:What is the purpose of cold drawing in special steel production?
Cold drawing is utilized in special steel production with the aim of enhancing the mechanical properties and dimensional accuracy of the steel. This technique involves pulling the steel through a die at room temperature, which leads to a reduction in the cross-sectional area and an increase in the length of the steel. By undergoing this process, the microstructure of the steel is refined, resulting in improved strength, hardness, and toughness. Furthermore, cold drawing has the ability to improve the surface finish and straightness of the steel, ensuring precise dimensions and making it suitable for a wide range of applications that require high-quality steel. In summary, cold drawing plays a vital role in improving the performance and quality of special steel, making it more dependable and efficient in various industrial sectors.
Q:What are the common techniques for testing the quality of special steel?
Several techniques are commonly used to test the quality of special steel, ensuring that it meets the necessary specifications and standards for its intended use. Among the most prevalent methods are: 1. Chemical Analysis: This technique involves analyzing the steel's composition to determine the concentration of different elements present. By conducting chemical analysis, it is possible to ensure that the steel contains the necessary elements in the desired quantities and to identify any impurities that might impact its quality. 2. Tensile Testing: Tensile testing is utilized to measure the strength and elasticity of steel. It entails subjecting a sample of the steel to an increasing load until it breaks. This helps establish the maximum stress the steel can endure before failure, providing valuable insights into its mechanical properties. 3. Hardness Testing: The purpose of hardness testing is to assess a steel's resistance to indentation or penetration. It aids in evaluating the steel's strength and its ability to withstand wear and deformation. Common hardness testing methods include the Brinell, Rockwell, and Vickers tests. 4. Microstructure Examination: Through microstructure examination, the internal structure of the steel is analyzed under a microscope. This technique helps identify the presence of defects such as inclusions, voids, or improper grain structure. Additionally, it provides information about the steel's overall quality and its heat treatment. 5. Non-Destructive Testing (NDT): NDT techniques are widely employed to test the quality of special steel without causing damage to the material. Ultrasonic testing, magnetic particle testing, liquid penetrant testing, and radiographic testing are some examples of NDT methods. These techniques enable the detection of surface or internal defects, cracks, and discontinuities that may compromise the steel's integrity. 6. Impact Testing: Impact testing measures a steel's ability to absorb energy under high-stress conditions. It involves striking a notched sample with a pendulum and measuring the energy absorbed during fracture. This type of testing provides valuable insights into the steel's toughness and its resistance to sudden shocks or impacts. 7. Corrosion Testing: Corrosion testing is conducted to evaluate a steel's resistance to corrosion in different environments. It helps determine the steel's susceptibility to rust, oxidation, or chemical attack, which is crucial for applications in corrosive settings. By employing these commonly used techniques, manufacturers and quality control professionals can ensure that special steel meets the required standards and specifications, guaranteeing its reliability and performance in various industries and applications.
Q:What are the different methods of machining special steel?
There are several different methods of machining special steel, each with its own advantages and applications. Some of the most common methods include: 1. Turning: Turning is a machining process that involves rotating a workpiece while a cutting tool removes material from the surface. This method is typically used to create cylindrical shapes and can produce high-quality finishes. 2. Milling: Milling is a versatile machining method that uses rotary cutters to remove material from a workpiece. It can be used to create complex shapes and contours, and is often employed in the production of special steel components. 3. Drilling: Drilling is a machining process that involves creating holes in a workpiece using a rotating cutting tool. It can be used to create both through holes and blind holes in special steel, and is commonly used in various industries. 4. Grinding: Grinding is a precision machining method that uses an abrasive wheel to remove material from a workpiece's surface. It is often used to achieve tight tolerances and smooth finishes on special steel components. 5. Broaching: Broaching is a machining process that uses a sharp cutting tool with multiple teeth to remove material in a series of linear cuts. It is commonly used to create keyways, splines, and other intricate shapes in special steel. 6. Electrical Discharge Machining (EDM): EDM is a non-traditional machining method that uses electrical discharges to remove material from a workpiece. It is particularly useful for machining special steel with complex shapes or for creating small features. 7. Laser Cutting: Laser cutting utilizes a high-powered laser to cut through special steel with extreme precision. It is commonly used for intricate designs and can produce smooth edges without the need for subsequent processing. Each of these methods has its own advantages and limitations, and the choice of machining method depends on factors such as the desired outcome, the complexity of the part, and the properties of the special steel being machined.
Q:How does special steel perform in forging applications?
Special steel is highly regarded in forging applications due to its exceptional strength, durability, and resistance to wear and tear. The unique properties of special steel, such as high tensile strength, heat resistance, and corrosion resistance, make it an ideal choice for withstanding the extreme conditions involved in forging processes. When subjected to the intense heat and pressure of forging, special steel maintains its structural integrity and mechanical properties. It can withstand the extreme temperature fluctuations without losing its hardness or becoming brittle, ensuring that the final forged product is of high quality and reliability. Furthermore, special steel offers excellent machinability and formability, allowing it to be easily shaped and manipulated during the forging process. This ease of working with special steel enables manufacturers to create intricate and complex shapes, resulting in finely crafted forged components. Special steel also exhibits superior resistance to fatigue and impact, making it highly suitable for applications that require high strength and toughness. It can withstand repeated stress and load cycles without experiencing significant deformation or failure, ensuring the longevity and reliability of forged products. In addition, special steel is known for its resistance to corrosion and oxidation, which further enhances its suitability for forging applications. It can withstand exposure to harsh environments, chemicals, and moisture, making it ideal for manufacturing components that are subjected to demanding operating conditions. Overall, special steel's exceptional performance in forging applications can be attributed to its high strength, durability, resistance to wear and tear, excellent machinability, and corrosion resistance. These properties make it a preferred choice in various industries, including automotive, aerospace, construction, and oil and gas, where high-quality forged components are essential for reliable and efficient operations.
Q:What are the requirements for special steel used in agricultural machinery?
The requirements for special steel used in agricultural machinery include high strength and durability to withstand heavy loads and harsh working conditions, excellent impact resistance to handle rough terrains, good corrosion resistance to protect against rust and moisture, and high wear resistance to prolong the lifespan of components exposed to abrasive materials. Additionally, the steel should have good weldability and machinability to facilitate the manufacturing process of agricultural machinery.
Q:What are the different forming techniques used for special steel?
Some of the different forming techniques used for special steel include hot forging, cold forging, extrusion, rolling, and casting.
Q:What are the different methods of testing the quality of special steel?
To assess the quality of special steel, a range of testing methods are employed. These methods serve to verify that the steel meets the necessary standards and is suitable for its intended applications. One such method is chemical analysis, which involves scrutinizing the steel's composition to ensure it adheres to the required chemical specifications. This analysis helps determine the presence and quantity of crucial elements like carbon, manganese, chromium, nickel, and others, which play a significant role in achieving specific mechanical properties. Another testing approach is mechanical testing, which aims to evaluate the steel's strength, hardness, ductility, and other mechanical properties. Common tests include tensile testing, which measures the steel's ability to withstand tension, and hardness testing, which gauges its resistance to indentation or scratching. Non-destructive testing (NDT) methods are also utilized to assess steel quality without causing any damage. Techniques such as ultrasonic testing, magnetic particle testing, and liquid penetrant testing are employed to identify surface and internal defects, cracks, or discontinuities that could compromise the steel's integrity. Microscopic examination is employed to study the microstructure of special steel, allowing for the evaluation of grain size, inclusions, and other structural features. This analysis provides insights into the steel's properties and potential defects. Corrosion testing is carried out to ensure that special steel can withstand corrosive environments. Various tests, such as salt spray testing, electrochemical methods, and exposure to corrosive substances, are performed to assess the steel's resistance to corrosion and suitability for specific applications. To evaluate the steel's toughness and resistance to sudden loading, impact testing is conducted. This involves subjecting the steel to high-energy impacts to determine if it can withstand sudden shocks without fracturing. Heat treatment analysis is also essential for special steel, as it often undergoes heat treatment processes to enhance its properties. This analysis involves examining the microstructure and hardness of the steel after treatment to ensure it has achieved the desired properties. In conclusion, the combination of these testing methods guarantees that special steel meets the necessary quality standards, making it suitable for various applications in construction, automotive, aerospace, and industrial equipment.
Q:How does special steel contribute to the weldability of products?
The weldability of products is improved in various ways by special steel. Firstly, special steel is designed specifically to have enhanced weldability characteristics, making it easier for welders to join different pieces of steel. This is achieved by carefully controlling the chemical composition of the steel, ensuring that it contains the necessary alloying elements and impurity levels to promote good weldability. Secondly, special steel often has a lower carbon content compared to regular steel, reducing the likelihood of weld metal cracking. Carbon is known to increase the susceptibility to cracking during welding, so by decreasing the carbon content, special steel reduces this risk, resulting in a stronger and more durable weld joint. Furthermore, the weldability of special steel is improved by controlling the grain size and microstructure. Fine-grained steel exhibits better toughness and reduced brittleness, making it less prone to cracking during welding. Similarly, a well-controlled microstructure ensures a more uniform distribution of alloying elements, leading to improved mechanical properties and weldability. To further enhance its weldability, special steel often undergoes various heat treatment processes. Annealing, normalizing, or quenching and tempering can refine the microstructure, relieve residual stresses, and improve the toughness of the steel, all of which contribute to better weldability. In addition, special steel is carefully manufactured to have low levels of impurities, such as sulfur and phosphorus, which can negatively affect weldability. By minimizing these impurities, the steel can be welded without the formation of detrimental welding defects, ultimately improving the overall quality of the weld. In conclusion, special steel plays a crucial role in enhancing the weldability of products. Its carefully controlled chemical composition, reduced carbon content, controlled grain size and microstructure, as well as the application of heat treatments, all contribute to easier, stronger, and more reliable weld joints.
Q:How does special steel contribute to the aerospace racing industry?
The aerospace racing industry heavily relies on special steel due to its superior strength, durability, and performance characteristics, which are essential for the demanding conditions and requirements of high-speed racing. One of the primary contributions of special steel to the aerospace racing industry lies in its capacity to withstand extreme temperatures and pressures. Special steel alloys, such as nickel-based superalloys, are specifically designed to maintain their mechanical properties even under high temperatures. This makes them highly suitable for withstanding the intense heat generated during racing. These alloys also exhibit exceptional creep resistance, enabling the components to endure prolonged exposure to elevated temperatures without experiencing any deformation or failure. Furthermore, special steel alloys possess remarkable strength-to-weight ratios, giving the aerospace racing industry a competitive advantage. The high strength of these alloys allows for the design and construction of lighter and more efficient racing components, including engine parts, landing gears, and structural elements. As a result, the overall weight of the aircraft is reduced, thereby enhancing its performance and speed while ensuring structural integrity and safety. In addition, special steel offers excellent corrosion resistance, which is crucial in the aerospace racing industry. The harsh conditions encountered during racing, such as exposure to moisture, chemicals, and atmospheric elements, can lead to corrosion and deterioration of vital components. However, special steel alloys, such as stainless steel, demonstrate high resistance to corrosion, guaranteeing the longevity and reliability of racing aircraft. Moreover, the unique metallurgical properties of special steel, such as high fatigue and fracture resistance, contribute significantly to the safety and reliability of the aerospace racing industry. The high fatigue strength of these alloys allows them to withstand repeated loading and unloading cycles without developing cracks or experiencing failures. This is particularly important in high-speed racing, where components undergo significant stress and strain. Additionally, special steel's exceptional fracture toughness ensures that any potential cracks or flaws do not propagate catastrophically, minimizing the risk of catastrophic failures during racing. In conclusion, special steel plays a critical role in the aerospace racing industry by providing superior strength, durability, and performance characteristics. Its ability to withstand extreme temperatures, offer excellent strength-to-weight ratios, resist corrosion, and exhibit high fatigue and fracture resistance make it an indispensable material for constructing racing aircraft components. Ultimately, the use of special steel in the aerospace racing industry enhances the performance, speed, safety, and reliability of racing aircraft, pushing the boundaries of aerospace technology and propelling the industry forward.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords