• Prime quality prepainted galvanized steel 730mm System 1
  • Prime quality prepainted galvanized steel 730mm System 2
  • Prime quality prepainted galvanized steel 730mm System 3
  • Prime quality prepainted galvanized steel 730mm System 4
  • Prime quality prepainted galvanized steel 730mm System 5
  • Prime quality prepainted galvanized steel 730mm System 6
Prime quality prepainted galvanized steel 730mm

Prime quality prepainted galvanized steel 730mm

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Construction building material galvanized color prepainted cold

rolled steel coil

 

Prepainted steel sheet is coated with organic layer, which provides higher anti-corrosion property and

a longer lifespan than that of galvanized steel sheets.

 

The base metals for prepainted steel sheet consist of cold-rolled, HDG electro-galvanized and hot-dip

Alu-zinc coated. The finish coats of prepainted steel sheets can be classified into groups as follows:

polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc

Prime quality prepainted galvanized steel 730mm

 

Standard and Grade :

Pre-paint galvanized steel coil



ASTM A755M-03

EN10169:2006

JISG 3312-2012

Commercial quality

                  CS

DX51D+Z

CGCC

 

 

 

Structure steel

SS GRADE 230

S220GD+Z

CGC340

SS GRADE 255

S250GD+Z

CGC400

SS GRADE 275

S280GD+Z

CGC440

SS GRADE 340

S320GD+Z

CGC490

SS GRADE550

S350GD+Z

CGC570


S550GD+Z


Application:

Outdoor

Roof, roof structure, surface sheet of balcony, frame of window, door of garage, rolled shutter door, booth, Persian blinds, cabana, etc

Indoor

Door, isolater, frame of door, light steel structure of house, home electronic appliances, ect.

Specifications

Commodity Name: Prepainted Galvanized Steel Coil

Standard: AISI, ASTM, DIN, GB, JIS   

Grade: TDC52D+Z   

Thickness 0.13-8.0mm  

Width:600mm-1350mm

Zinc Coating:275g/m2

Polyester Coating Thickness:Top and Back coating thickness depend by Buyer Requirement.

Polyester Coating Type:2/2,1/2m,1/2.

Polyester Type: Polyester, silicone modified polyester, high durability polyester (HDP), polyvinylidene fluoride (PVDF)

Unit Roll Weight:5-20tons

Place of Origin Shanghai , China (Mainland)  

Surface Treatment :Color Coated

Manufacture Progress:HRC-CRC-GALVANIZED-COLOR COATED  

Application : Construction, electrical, transportation, steel plant, composite board plant, steel tile factory  

Payment & Shipping Terms:T/T ,L/C, and FOB CHINA 

Minimum Order Quantity: 25Tons  

Packge Type: Moisture-proof paper inner,Steel outside,Bundle by steel rope.

Package in Container : Wood as a foot pad, wire rope reinforcement,PPGI steel coil tied together by steel rope.


Q:What are the different types of steel billet reheating furnaces?
There are several different types of steel billet reheating furnaces used in the metal industry. These furnaces are designed to heat steel billets to a specific temperature before they are further processed or shaped into various end products. The main types of steel billet reheating furnaces include: 1. Pusher Type Furnace: This type of furnace uses a pusher mechanism to move the billets through the furnace. The billets are loaded onto a roller conveyor and pushed into the furnace using mechanical pusher plates. As the billets move through the furnace, they are heated by the combustion gases or electrical heating elements. 2. Walking Beam Furnace: In a walking beam furnace, the billets are placed on a series of moving beams or skids. These beams move in a continuous loop, carrying the billets through the furnace. As the billets move, they are heated by the burners or electrical heating elements located above and below the beams. 3. Rotary Hearth Furnace: This type of furnace consists of a rotating hearth on which the billets are placed. The hearth rotates, bringing the billets through different temperature zones within the furnace. The billets are heated by the burners or electrical heating elements located above the hearth. 4. Continuous Furnace: A continuous furnace is a type of furnace where the billets are continuously fed into one end and discharged from the other end. The billets move through the furnace on a conveyor belt or roller conveyor, being heated by the combustion gases or electrical heating elements as they pass through. 5. Walking Hearth Furnace: In a walking hearth furnace, the billets are placed on a hearth that moves in a reciprocating motion. The hearth moves back and forth, bringing the billets through the furnace. The billets are heated by the burners or electrical heating elements located above and below the hearth. Each type of steel billet reheating furnace has its own advantages and is suitable for specific applications. The choice of furnace depends on factors such as the required heating capacity, the size and shape of the billets, the desired temperature profile, and the energy efficiency requirements.
Q:Who knows the diamond is?Who knows the diamond is carbon? Is it C60?
It is also called the diamond diamond, crystal, it is not the molecules themselves, so the formula does not apply to.C said it is only by this kind of carbon elements. While C60 is footballene is another matter, the 60 is because it is a molecular crystal, each molecule consists of 60 carbon.
Q:Are steel billets prone to corrosion?
Corrosion is not an inherent issue for steel billets. However, the likelihood of corrosion occurring depends on the specific steel type used and the environmental conditions in which they are placed. For instance, stainless steel billets possess a considerable amount of chromium, resulting in the formation of a protective layer on the surface that greatly enhances their resistance to corrosion. Conversely, carbon steel billets lack this protective layer, leading to increased vulnerability to corrosion. The presence of moisture, oxygen, and particular chemicals can expedite the corrosion process. Therefore, it is essential to handle and store steel billets appropriately, while also applying suitable coatings or treatments to minimize the risk of corrosion.
Q:How are steel billets used in the manufacturing of construction formwork?
Construction formwork relies heavily on steel billets as a vital component. Formwork, which encompasses temporary or permanent molds or structures, is crucial for holding and supporting newly poured concrete until it solidifies. To create the formwork, semi-finished steel products known as steel billets are employed as the raw material. Typically, these billets are cast from molten steel into rectangular or square shapes and cooled to solidify. The resulting billets undergo further processing to produce the specific formwork components. Initially, the steel billets are cut into smaller sections, according to the desired formwork dimensions. These sections are then shaped and welded together to form the framework. The billets offer the necessary strength and durability to withstand the weight of concrete and external forces during construction. Following the completion of the framework, additional components such as panels, braces, and tie rods are attached. These components, also made from steel billets, enhance stability and distribute the load evenly across the formwork. Steel billets are the preferred material for formwork construction due to their high strength-to-weight ratio and exceptional resistance to corrosion. They can endure the pressure exerted by poured and curing concrete, ensuring the formwork remains intact and stable. Furthermore, steel billets are easily molded and shaped into diverse configurations, allowing for flexibility and customization in formwork design. In conclusion, steel billets play a vital role in manufacturing construction formwork. They provide the necessary strength, durability, and stability required to support freshly poured concrete until it solidifies. By utilizing steel billets, formwork manufacturers can create robust and reliable structures that contribute to efficient and safe construction processes.
Q:What industries rely heavily on steel billets?
The industries that heavily rely on steel billets include construction, automotive, aerospace, and manufacturing.
Q:How are steel billets used in the production of steel cables?
Steel billets are an integral component in the production of steel cables. These billets serve as the raw material from which the cables are made. To produce steel cables, the billets undergo a series of processes. Firstly, the steel billets are heated in a furnace to extremely high temperatures, which makes them malleable and easier to work with. This process is known as annealing. The billets are then passed through a series of rollers to shape them into the desired form and size for the cables. Next, the shaped billets are passed through a wire drawing machine where they are pulled through a series of dies to reduce their diameter and increase their length. This results in a wire-like structure known as a wire rod. These wire rods are then further processed through a series of machines to clean and remove any impurities or surface defects. They are then coated with lubricants to reduce friction during the subsequent processes. The wire rods are then passed through a wire stranding machine, where multiple wires are twisted together to form strands. These strands are then combined together, either by twisting or braiding, to form the final steel cables. The cables are once again coated with lubricants to improve their durability and resistance to corrosion. Overall, steel billets play a crucial role in the production of steel cables as they serve as the starting material for the entire process. Through a series of heating, shaping, and drawing processes, the billets are transformed into wire rods, which are then further processed to create the strands and eventually the final steel cables.
Q:How are steel billets used in the manufacturing of consumer goods?
Steel billets are an essential component in the manufacturing of various consumer goods. These billets are semi-finished steel products that are typically hot-rolled into various shapes, such as bars, rods, or sheets before they are used in the production process. One way steel billets are used in the manufacturing of consumer goods is in the production of automobiles. They are often transformed into different parts of a car's body, such as doors, fenders, or hoods. The strength and durability of steel make it an ideal material for these components, ensuring the safety and longevity of the vehicle. Another significant application of steel billets is in the construction industry. They are commonly used to produce beams, columns, and other structural elements that are crucial for building infrastructure like bridges, buildings, and stadiums. Steel's high tensile strength and ability to withstand heavy loads make it an ideal material for these applications. Steel billets also play a vital role in the manufacturing of appliances and household goods. For instance, they are used to produce refrigerators, washing machines, and ovens, where steel's resistance to corrosion and heat is highly valued. Additionally, steel billets are utilized in the production of furniture, tools, and kitchenware, providing strength and stability to these consumer goods. In the production of consumer goods, steel billets are typically subjected to various processes such as cutting, welding, and shaping to achieve the desired final product. These billets serve as the raw material that undergoes further manufacturing steps, including machining, forging, or casting, to create the specific components or parts needed. Overall, steel billets are an integral part of the manufacturing process for a wide range of consumer goods. The versatility, strength, and durability of steel make it a preferred material in industries such as automotive, construction, appliances, and furniture.
Q:How are steel billets reheated before rolling or forging?
Steel billets are reheated before rolling or forging by passing them through a furnace or a reheating furnace, which raises their temperature to a specific range. This process, known as billet reheating, is crucial as it improves the billets' malleability, making them easier to shape and work with during the subsequent rolling or forging operations.
Q:What is the role of steel billets in the production of sheet metal?
Steel billets play a crucial role in the production of sheet metal as they are the primary raw material used to create thin, flat sheets of metal. These billets are heated, rolled, and shaped through a series of processes to transform them into sheet metal. The quality and composition of the billets directly impact the strength, durability, and overall characteristics of the final sheet metal product.
Q:What are the main factors affecting the cost of steel billets?
The cost of steel billets can be influenced by several key factors. 1. Raw material expenses play a significant role in determining the overall cost of steel billets. The prices of iron ore and scrap metal, which are used in the production process, can fluctuate in the global market, causing the cost of steel billets to rise or fall. 2. The cost of manufacturing steel billets includes various production and processing costs. These expenses, such as energy, labor, and maintenance costs, can vary depending on factors like production efficiency, skilled labor availability, and energy source prices. 3. The balance between supply and demand in the steel billet market can heavily impact their cost. If there is high demand and limited supply, prices can increase. Conversely, if there is excess supply and low demand, prices can decrease. 4. The level of competition among steel producers can also affect the cost of steel billets. In a competitive market, prices may be driven down as producers vie for customers. In a less competitive market, producers may have more pricing power, leading to higher prices. 5. Government policies and trade barriers, such as import tariffs and quotas, can influence the cost of steel billets. These measures can either protect domestic producers or create opportunities for cheaper imports, depending on specific policies in place. 6. Fluctuations in currency exchange rates can impact the cost of steel billets. A stronger domestic currency can make imported steel billets cheaper, while a weaker currency can make them more expensive. 7. The cost of transporting steel billets from production facilities to end-users can also affect their overall cost. Factors like distance, transportation mode, and fuel prices can impact transportation expenses, which can, in turn, affect the final price of steel billets. It is important to consider that these factors can interact with each other and their impact on the cost of steel billets can vary based on market conditions and industry dynamics.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords