• Photovoltaic Grid-Connected Inverter SG1000TS System 1
  • Photovoltaic Grid-Connected Inverter SG1000TS System 2
Photovoltaic Grid-Connected Inverter SG1000TS

Photovoltaic Grid-Connected Inverter SG1000TS

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
50 unit
Supply Capability:
1000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of Photovoltaic Grid-Connected Inverter SG1000TS Description

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into

 autility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network.

 It is acritical BOS–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar inverters have

special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

Suitable for 50Hz grid, could be used in Asia, Australia and Europe.

 

 

2. Main Features of the Photovoltaic Grid-Connected Inverter SG1000TS

• 5 square meters area for megawatt-class equipment

• Transport and installation by forklift, more flexible and economical

 

• Open door design of three sides, easy for installation and maintenance

• More flexible for inner devices overall replacement

 

• Efficient cooling patented design

• Patented structure design of inlet and outlet, effective dust proof

• efficient heat insulation layer

 

 

3. Photovoltaic Grid-Connected Inverter SG1000TS Images

 

 

 

 

 

4. Photovoltaic Grid-Connected Inverter SG1000TS Specification

Input Side Data(DC)

Max. DC power (@ cos φ =1)

1120kW

Max. input voltage

1000V

Start voltage

 500V

Min. working voltage

460V

Max. input current

2440A

MPPT voltage range 

460~850V

Output Side Data(AC)

Rated power

1000kW

Max. output AC power

1100kVA

Max. output current

2016A

Max. THD

<3%(at nominal power)

Rated grid voltage

315V

Grid voltage range

252~362V 

Rated grid frequency

50Hz/60Hz

Grid frequency range

47~52Hz/57~62Hz

Power factor at rated power

>0.99

DC current injection

<0.5% of rated inverter output current

Adjustable displacement factor

0.9 (lagging) ~0.9 (leading)

Efficiency

Max. efficiency

98.70%

European efficiency

98.50%

Protection

DC overvoltage protection 

Yes

AC overvoltage protection

Yes

Grid monitoring

Yes

Ground fault monitoring

Yes

Overheat protection

Yes

Insulation monitoring 

Yes

General Data

DimensionsW×H×D

2538X2470X2050mm

Weight

4200Kg

Operating temperature range

-35~50

External auxiliary supply voltage (Opt.)

380V

Cooling concept

Temperature controlled air-cooling

Degree of protection

IP54

Max. permissible value for relative humidity (non-condensing)

0~95%, non -condensing

Max. altitude

6000m ( >3000m derating)

Communication port/protocols

StandardRS485/ ModbusInternet

Options:  CDTDNP3.0101103104GPRS/CDMA module

 

 

 

5. FAQ of Photovoltaic Grid-Connected Inverter SG1000TS

Q1. What is the difference between inverter and solar inverter?

A1. Inverter only has AC inpput, but solar inverter both connect to AC input and solar panel, it saves more power.

 

 

Q2. What is the difference between MPPT&PWM?

A2. MPPT has higher efficiency, it can track the max power point and won't waste energy.

 

Q:What is the PV inverter starting voltage
The inverter not only has the function of direct current conversion, but also has the function of maximizing the performance of the solar cell and the system fault protection function. (With grid system), automatic voltage adjustment function (for network connection), DC detection function (for network connection), DC grounding detection (for network connection), automatic power control function Function (for grid connection). Here is a brief introduction to automatic operation and shutdown function and maximum power tracking control function.
Q:Can a solar inverter be used with a solar-powered telecommunications system?
Yes, a solar inverter can be used with a solar-powered telecommunications system. A solar inverter is responsible for converting the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices. In the case of a solar-powered telecommunications system, the solar inverter would convert the DC power generated by the solar panels into AC power to effectively operate the telecommunication equipment.
Q:What is the role of a voltage control unit in a solar inverter?
The role of a voltage control unit in a solar inverter is to regulate and stabilize the voltage output from the solar panels, ensuring that it matches the required voltage for the connected electrical devices or grid connection. This unit helps to maximize the efficiency of the solar inverter and prevent any potential damage to the electrical system by maintaining a consistent and optimal voltage level.
Q:How does a solar inverter handle variations in ambient temperature?
A solar inverter is designed to handle variations in ambient temperature by incorporating temperature compensation algorithms. These algorithms adjust the inverter's performance parameters, such as voltage and frequency, based on temperature measurements. This ensures that the inverter operates optimally and efficiently across a wide range of temperature conditions, maintaining stable and reliable power conversion from the solar panels.
Q:Can a solar inverter be used with different types of energy management systems?
Yes, a solar inverter can be used with different types of energy management systems. Solar inverters are designed to convert the DC (direct current) electricity generated by solar panels into AC (alternating current) electricity that can be used to power various electrical devices and appliances. These inverters can be integrated with different energy management systems, such as smart grids or battery storage systems, to optimize energy usage, monitor performance, and enhance overall energy efficiency.
Q:What is the importance of voltage and frequency control in a solar inverter?
The importance of voltage and frequency control in a solar inverter is paramount as it ensures the efficient and reliable operation of the solar power system. Voltage control helps maintain the appropriate voltage levels, enabling the safe and optimal utilization of the generated solar energy. It ensures compatibility with the electrical grid and protects connected appliances and devices from potential damage. Similarly, frequency control ensures that the output power from the solar inverter matches the frequency of the grid, enabling seamless integration and preventing disruptions in the electrical supply. Both voltage and frequency control play a crucial role in maximizing the performance and stability of the solar inverter system.
Q:What is the role of a solar inverter in a solar-powered ventilation system?
The role of a solar inverter in a solar-powered ventilation system is to convert the direct current (DC) electricity produced by the solar panels into alternating current (AC) electricity that can be used to power the ventilation system. The inverter ensures that the electricity generated by the solar panels is compatible with the electrical requirements of the ventilation system, enabling it to operate efficiently and effectively.
Q:How is the output voltage and frequency of a solar inverter regulated?
The output voltage and frequency of a solar inverter are regulated through a combination of control systems and power electronics. The control system continuously monitors the input from the solar panels and adjusts the inverter's operation accordingly. It analyzes the DC voltage generated by the panels and converts it to AC voltage at the desired frequency. This is achieved by controlling the switching of power electronic devices such as transistors or thyristors. These devices convert the DC power into high-frequency AC power, which is then transformed to the desired output voltage and frequency through a transformer or filter circuit. Overall, the regulation of the output voltage and frequency is achieved by the precise control of these power electronic components within the solar inverter.
Q:Can a solar inverter be used with a solar-powered greenhouse system?
Yes, a solar inverter can be used with a solar-powered greenhouse system. A solar inverter is necessary to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power the various components of a greenhouse system, such as fans, lighting, and irrigation systems.
Q:Can a solar inverter convert DC power to AC power during a power outage?
No, a solar inverter cannot convert DC power to AC power during a power outage. During a power outage, the solar inverter relies on the grid to function, and without grid power, it cannot convert DC power from the solar panels into usable AC power.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords