• Solar Inverter 10kva KD-WV230 Interver, 260W, High Efficiency & Best Cost-Effectiveness System 1
  • Solar Inverter 10kva KD-WV230 Interver, 260W, High Efficiency & Best Cost-Effectiveness System 2
Solar Inverter 10kva KD-WV230 Interver, 260W, High Efficiency & Best Cost-Effectiveness

Solar Inverter 10kva KD-WV230 Interver, 260W, High Efficiency & Best Cost-Effectiveness

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1000 pc
Supply Capability:
100000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure

DC input voltage range22-50VDC

AC output voltage range80-160VAC/180-260VAC

AC output power 260W

AC frequency range50Hz/60Hz

G.W.1.1kg

Size250mm*200mm*60mm

KD-WV230 Series Using IP67 waterproof streamline design, Can effectively prevent rainwater on the surface erosion, Built-in high-performance Maximum Power Point Tracking(MPPT)Function,Better able to track changes in the solar luminosity and control different output power, Effectively capture and collect sunlight. AC electric power transmission using the reverse transmission technology, Is one of our patented technology, The inverter output power can provide load priority use, Extra electricity to the grid, Efficient use of the inverter to the power emitted, Electricity transmission rate of up to 99%.

micro inverter

Features

KD-WV230 Interver,260W,High Efficiency & Best Cost-Effectiveness

Pure Sine Wave Output;

High performance Maximum Power Point Tracking(MPPT);

Power Automatically Locked(APL);

Reverse power transmission;

High-Frequency High Conversion Rate;

Anti-Islanding Protect;

Input /output is fully isolated to protect the electrical safety;

Multiple parallel stacking;

The Leading Patent Technology;

IP67 WaterProof;

Flexible Installation;

Simplify maintenance (user serviceable)

High Efficiency & Best Cost-Effectiveness

 

Images

 

 micro inverter

 

 

Specification

Input Data

KD-WV230-120VAC/230VAC

  Recommended input power

200-300Watt

  Recommend the use of PV modules

300W/Vmp>34V/Voc<50V

  Maximum input DC voltage

50V

  Peak power tracking voltage

25-40V

  Operating Voltage Range

17-50V

  Min / Max start voltage

22-50V

  Maximum DC short current

15A

  Maximum Input Current

9.8A

  Output Data

@120VAC

@230VAC

  Peak power output

260Watt

260Watt

  Rated output power

250Watt

250Watt

  Rated output current

2.08A

0.92A

  Rated voltage range

80-160VAC

180-260VAC

  Rated frequency range

57-62.5Hz

47-52.5Hz

  Power factor

>96%

>96%

  Maximum units per branch circuit

15PCS(Single-phase)

30PCS(Single-phase)

  Output Efficiency

@120VAC

@230VAC

  Static MPPT efficiency

99.5%

99.5%

  Maximum output efficiency

92.3%

94.6%

  The average efficiency

91.2%

93.1%

  Night time power consumption

<50mW Max

<70mW Max

  THDI

<5%

<5%

  Exterior

  Ambient temperature

-40°C to +60°C

  Operating temperature range (inverter inside)

-40°C to +82°C

  Dimensions (WxHxD)

195mm*130mm*32mm

  Weight

0.65kg

  Waterproof Rating

IP67

  Cooling

Self-cooling

  Feature

  Power transmission mode

Reverse transfer, load priority

  Electromagnetic compatibility

EN50081.part1EN50082.part1

  Grid disturbance

EN61000-3-2 Safety EN62109

  Grid detection

DIN VDE 1026 UL1741

  Certificate

CEC,CE National patent technology

micro inverter

 micro inverter

FAQ

Can we visit your factory?

Surely, I will arrange the trip basing on your business schedule.

Can you do OEM for us?

Yes, we can.

How do you pack your products?

We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

Can you help us install the module if we cooperate with you?

We haven’t entered into installation sector, but we have the plan in near future.

 

Q: What is the role of a grid-tie inverter in a solar PV system?
The role of a grid-tie inverter in a solar PV system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power electrical devices in a home or business. In a solar PV system, the solar panels produce DC electricity when exposed to sunlight. However, most homes and businesses use AC electricity, which is the standard form of electricity provided by utility companies. This is where the grid-tie inverter comes in. The grid-tie inverter takes the DC electricity produced by the solar panels and converts it into AC electricity that is compatible with the electrical grid. It ensures that the electricity generated by the solar panels is synchronized with the utility power and can be seamlessly integrated into the existing electrical system. One of the key functions of a grid-tie inverter is to match the frequency, voltage, and phase of the AC electricity generated by the solar panels with that of the utility power. This synchronization is crucial to ensure a smooth flow of electricity between the solar system and the grid, and to prevent any disruptions or damage to the electrical system. Additionally, a grid-tie inverter also monitors the electrical grid for safety reasons. It constantly checks the grid for any voltage or frequency fluctuations and can automatically disconnect from the grid in the event of a power outage or grid failure. This feature is important to protect the safety of electrical workers who may be repairing the grid during an outage. Furthermore, a grid-tie inverter allows for net metering, which is a billing arrangement where excess electricity generated by the solar system can be fed back into the grid. This means that if the solar system produces more electricity than is being used, the excess energy can be sent back to the grid and the homeowner or business owner can receive credits for the excess energy produced. This can help offset energy costs and potentially result in monetary savings. Overall, the grid-tie inverter plays a vital role in a solar PV system by converting the DC electricity generated by the solar panels into AC electricity that can be used to power electrical devices, ensuring synchronization with the electrical grid, monitoring the grid for safety, and enabling net metering for potential financial benefits.
Q: Can a solar inverter be used with a string inverter system?
No, a solar inverter and a string inverter system are two different types of inverters used in solar power systems. They cannot be used interchangeably as they have different functionalities and are designed for different types of solar installations.
Q: What is the role of a solar inverter in preventing system downtime?
The role of a solar inverter in preventing system downtime is to convert the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power electrical devices and to feed excess energy back into the grid. By maintaining a stable and reliable flow of electricity, solar inverters help prevent disruptions and downtime in the solar energy system, ensuring continuous operation and maximizing energy efficiency.
Q: Can a solar inverter be used in commercial or industrial applications?
Yes, a solar inverter can be used in commercial or industrial applications. Solar inverters are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) suitable for use in commercial or industrial settings. They are commonly used to power various electrical loads, machinery, and equipment in these sectors, helping to reduce energy costs and promote sustainability.
Q: Can a solar inverter be used with solar-powered desalination systems?
Yes, a solar inverter can be used with solar-powered desalination systems. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that is required for the operation of desalination systems. By integrating a solar inverter, solar energy can efficiently power the desalination process, making it a sustainable and eco-friendly solution for water purification.
Q: Can a solar inverter be easily integrated into an existing electrical system?
Yes, a solar inverter can be easily integrated into an existing electrical system. It can be connected to the main electrical panel to convert the DC power generated by solar panels into AC power that can be used to power appliances and devices in the building. However, it is important to consult with a professional electrician to ensure proper installation and compatibility with the existing system.
Q: How do you calculate the payback period for a solar inverter?
To calculate the payback period for a solar inverter, you need to determine the initial cost of the inverter and then calculate the annual savings or earnings generated by the inverter. Divide the initial cost by the annual savings to get the payback period, which is the time it takes to recoup the investment through savings or earnings.
Q: Can a solar inverter be used with a solar-powered CCTV system?
Yes, a solar inverter can be used with a solar-powered CCTV system. A solar inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power the CCTV system. By connecting the solar panels to a solar inverter, the energy produced by the sun can be harnessed and efficiently utilized by the CCTV system.
Q: How does a solar inverter handle islanding detection and prevention?
A solar inverter handles islanding detection and prevention by continuously monitoring the electrical grid. If the solar inverter detects a disturbance or a loss of grid power, it immediately stops injecting power into the grid. This action helps prevent the formation of an island, where a portion of the grid remains energized by the solar inverter while the main grid is down. By actively monitoring and ceasing power injection during grid abnormalities, a solar inverter ensures the safety of utility workers and prevents potential equipment damage.
Q: Can a solar inverter be used with different types of grounding materials?
Yes, a solar inverter can be used with different types of grounding materials. Solar inverters are designed to be compatible with various grounding systems, such as ground rods, ground plates, and grounding grids. The choice of grounding material may depend on local regulations, soil conditions, and the specific requirements of the solar installation. However, it is important to ensure that the chosen grounding material meets the safety standards and provides proper electrical grounding for the solar system.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords