• Hot Forged Alloy Structure Steel Round Bars Special Steel System 1
  • Hot Forged Alloy Structure Steel Round Bars Special Steel System 2
Hot Forged Alloy Structure Steel Round Bars Special Steel

Hot Forged Alloy Structure Steel Round Bars Special Steel

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Alloy Steel
Shape:
Steel Round Bar
Standard:
AISI,ASTM,JIS,GB,BS,DIN,API,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Net Weight:
as required
Length:
as required
Thickness:
as required

Steel bar is widely used in hardware, chemistry, foodstuff, medicine apparatus, making industry, computer or notebook components, etc. Common steel bar grade include Chinese Standard: 20#, 25#, 35#, 45#, 50#, 60#;Japan Standard: S20C, S25C, S35C, S45C, S55C, S60C;US Standard: AISI1020, AISI1040, AISI1045, AISI1050;Europe Standard: CK15, C. 22, C45, CK45, C60, CK60; C45E.

Chemical composition of steel bar

StandardCSiMnCrNiP/S ≤
DIN≤0.15≤1.0≤2.01890.03
GB≤0.15≤1.0≤2.01890.03


Product show

.jpg


Workshop show

Hot Forged Alloy Structure Steel Round Bars Special Steel


Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

 

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                        2)as customer's requirement


Main Product

Plastic Mould Steel 

DIN 1.2311,1.2738,1.2083,1.2316 etc. 

AISI P20,P20+Ni,420 etc. 

JIS SUS420J2 

 Hot Work Steel 

DIN 1.2344,1.2343,1.2367,1.2365,1.2581,1.2713 etc. 

AISI H13,H11,H10,H21, etc. 

JIS SKD61,SKD6,SKD5,SKT4 etc. 

 Cold Work Steel 

DIN 1.2739, 1.2601, 1.2080, 1.2436, 1.2631, 1.263, 1.2510, 1.2327 etc. 

AISI D2, D5, D3, D6, A8, A2, O1 etc. 

JIS SKD10, SKD11, SKD1, SKS3 etc. 

 High Speed Steel 

DIN 1.3343, 1.3243, 1.3247, 1.3355 etc. 

AISI M2, M35, M42, T1 etc.

JIS SKH51, SKH35, SKH59, SKH2 etc. 

 Alloy Structural Steel 

DIN 1.7035,1.6511,1.7220,1.7225 etc. 

AISI 5140, 4340, 4135, 4140 etc. 

JIS SCr440,SNCM439,SCM435,SCM440 etc. 

 Stainless & Carbon Steel or Others 

DIN 1.4125,1.1191 etc 

AISI 440C,1045, 1020 etc. 

JIS SUS440C,S45C etc


Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 


Q:What is the cost of special steel compared to regular steel?
The cost of special steel is typically higher than that of regular steel due to its unique properties and manufacturing processes.
Q:What are the different testing methods for special steel?
There are several testing methods that are commonly used for special steel to ensure its quality and performance. These methods include: 1. Chemical Analysis: This method involves determining the chemical composition of the steel, including the presence of various elements and impurities. It helps in verifying the steel's adherence to specific chemical composition requirements. 2. Mechanical Testing: This testing method is used to evaluate the mechanical properties of special steel, such as its strength, ductility, hardness, and toughness. It includes tests like tensile testing, impact testing, hardness testing, and fatigue testing. 3. Microstructure Analysis: Microscopic examination of the steel's microstructure is essential to assess its internal structure, grain size, and shape. Techniques like optical microscopy, electron microscopy, and X-ray diffraction are used to observe the steel's microstructure and identify any defects or abnormalities. 4. Non-Destructive Testing (NDT): NDT methods are used to inspect the steel without causing any damage to it. These methods include ultrasonic testing, magnetic particle testing, liquid penetrant testing, and radiographic testing. They help detect surface and subsurface defects such as cracks, voids, inclusions, and discontinuities. 5. Corrosion Testing: Special steel is often used in applications where resistance to corrosion is crucial. Various corrosion testing methods, such as salt spray testing, electrochemical testing, and immersion testing, are used to evaluate the steel's resistance to corrosion and determine its corrosion rate. 6. Metallography: Metallographic testing involves preparing a cross-section of the steel sample, polishing it, and etching it to reveal its microstructure. It helps in assessing the quality, heat treatment effects, and grain size distribution of the steel. 7. Dimensional and Surface Inspection: This testing method ensures that the special steel meets the required dimensional tolerances and surface quality. Techniques such as dimensional measurement, surface roughness measurement, and visual inspection are used to verify the steel's conformity. By employing these testing methods, manufacturers and quality control personnel can ensure that special steel meets the necessary standards, specifications, and customer requirements.
Q:How does special steel perform in terms of creep resistance at elevated temperatures?
Special steel is renowned for its outstanding ability to withstand creep deformation at high temperatures. Creep refers to the gradual distortion of a material under constant stress over an extended period of time at elevated temperatures. Special steel, specially designed to endure high temperatures, possesses an impressive capacity to resist creep and retain its structural integrity. The extraordinary creep resistance of special steel is attributed to its distinctive composition, which incorporates various alloying elements like chromium, molybdenum, and vanadium. These alloying elements enhance the steel's strength at high temperatures, augment its resistance to deformation, and hinder the formation of detrimental changes in its microstructure that can occur during creep. Moreover, special steel undergoes specific heat treatment procedures such as quenching and tempering, which further enhance its resistance to creep deformation. These procedures refine the steel's microstructure, resulting in a material that is fine-grained and uniform, enabling it to endure deformation even when exposed to high temperatures for extended periods. The exceptional creep resistance of special steel makes it the preferred choice in various industries that operate under high-temperature conditions, including power generation, petrochemicals, and aerospace. It provides extended service life, reduced maintenance requirements, and enhanced safety in critical applications where failure due to creep deformation could have severe consequences. In conclusion, special steel demonstrates remarkable performance in terms of its ability to resist creep deformation at high temperatures. Its distinct composition, including alloying elements and specific heat treatment procedures, empowers it to withstand deformation and maintain its structural integrity even under prolonged exposure to elevated temperatures.
Q:What are the main applications of special steel in the oil and gas equipment?
Special steel is widely used in the oil and gas equipment industry due to its exceptional properties such as high strength, corrosion resistance, and heat resistance. It is primarily used in applications such as drilling rigs, pipelines, valves, pumps, and offshore platforms. Special steel ensures the durability and reliability of these equipment in harsh environments, thereby enhancing the overall efficiency and safety of oil and gas operations.
Q:What are the different types of alloy steel?
There are several different types of alloy steel, including stainless steel, tool steel, maraging steel, high-strength low-alloy steel (HSLA), and nickel-based alloy steel.
Q:What are the main applications of special steel in the mining processing?
Special steel is widely used in mining processing due to its superior strength, durability, and resistance to extreme conditions. It is primarily used in the manufacturing of mining equipment such as crushers, conveyors, and drilling machines. Special steel is also utilized in the construction of mining infrastructure, including tunnels, shafts, and support structures. Additionally, it is employed in the production of wear-resistant components, such as grinding balls and liners, which are crucial for efficient ore processing. Overall, special steel plays a vital role in enhancing the productivity, efficiency, and safety of mining operations.
Q:What are the requirements for special steel used in power plants?
Given the critical role that these materials play in ensuring the safe and efficient operation of power generation facilities, the requirements for special steel used in power plants are specific and stringent. Here are some of the key requirements: 1. Withstanding high temperatures: Special steel used in power plants must maintain its structural integrity even at elevated temperatures, especially in areas like the combustion chamber or steam turbines. 2. Excellent corrosion resistance: Power plants often operate in environments with high levels of moisture, chemicals, and other corrosive elements. Special steel must be able to resist corrosion to prevent degradation and premature failure. 3. High strength and toughness: Power plants generate substantial amounts of energy, so the components made of special steel must be strong and tough enough to withstand mechanical stresses and loads. This includes resistance to fatigue, creep, and stress corrosion cracking. 4. Good weldability: Welding is often necessary during the fabrication or maintenance of power plant components. Special steel should have good weldability to ensure strong and reliable joints that maintain the overall system's structural integrity. 5. Low thermal expansion: Special steel used in power plants should have low thermal expansion properties to minimize the risk of thermal stress and distortion caused by temperature variations during operation. This prevents premature failure and ensures dimensional stability. 6. Resistance to radiation: In some power plants, such as nuclear facilities, special steel may be exposed to radiation. Therefore, the steel should have good resistance to radiation damage, ensuring long-term performance and safety. 7. Compliance with industry standards: Special steel used in power plants must meet specific industry standards and codes to ensure quality, reliability, and safety. These standards may include ASTM, ASME, or ISO, among others. Overall, the requirements for special steel used in power plants are driven by the need for high temperature resistance, corrosion resistance, strength, weldability, low thermal expansion, radiation resistance, and compliance with industry standards. Meeting these requirements ensures the integrity and longevity of power plant components, contributing to the safe and efficient generation of electricity.
Q:What are the requirements for special steel used in defense equipment manufacturing?
The requirements for special steel used in defense equipment manufacturing typically include high strength and durability, resistance to corrosion and wear, good toughness and impact resistance, as well as the ability to withstand extreme temperatures and harsh environments. Additionally, the steel must meet stringent quality control standards and industry specifications to ensure its reliability and performance in critical defense applications.
Q:What are the main factors affecting the strength of special steel?
The main factors affecting the strength of special steel include the composition of the steel, the heat treatment process, and the presence of any impurities or defects in the material. Additionally, the grain size and structure of the steel, as well as the presence of any alloying elements or treatments, can also impact its strength.
Q:How does special steel contribute to the automotive parts industry?
Enhanced strength, durability, and performance are crucial attributes that special steel brings to the automotive parts industry. This unique material plays a pivotal role in improving the overall safety, reliability, and efficiency of vehicles. One of the primary benefits of special steel in the automotive parts industry is its ability to withstand extreme conditions, high temperatures, and pressures. This exceptional characteristic makes it perfect for manufacturing vital engine parts like crankshafts, camshafts, and connecting rods, which endure intense mechanical stress and heat. By utilizing special steel, these critical components can withstand the demanding conditions of combustion engines, resulting in enhanced engine performance and longevity. Another significant advantage of special steel is its resistance to corrosion. Automotive parts are exposed to various corrosive elements such as moisture, chemicals, and road salt. With the use of special steel, manufacturers can produce corrosion-resistant parts like exhaust systems, suspension components, and brake rotors, which play a crucial role in maintaining the structural integrity and safety of vehicles over time. Furthermore, special steel offers exceptional formability and weldability, enabling the production of complex automotive parts with precision and ease. This versatility allows manufacturers to create lightweight yet robust components like chassis, body panels, and suspension arms. These components contribute to fuel efficiency, handling, and overall vehicle performance. Additionally, the high tensile strength and toughness of special steel contribute to the safety of vehicles by ensuring the structural integrity of safety-critical parts like steering columns, seat frames, and roll bars. These components play a vital role in protecting occupants during accidents and collisions, making special steel an indispensable material for enhancing overall vehicle safety. In conclusion, the unique properties and characteristics of special steel have a significant impact on the automotive parts industry. Its strength, durability, corrosion resistance, formability, and weldability make it an ideal material for manufacturing critical components in automobiles. By incorporating special steel into various parts, vehicles can achieve improved performance, safety, and reliability while meeting the demands of modern automotive standards.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords