• High-quality Carbon Seamless Steel Pipe For Boiler ST35-ST CNBM System 1
  • High-quality Carbon Seamless Steel Pipe For Boiler ST35-ST CNBM System 2
  • High-quality Carbon Seamless Steel Pipe For Boiler ST35-ST CNBM System 3
  • High-quality Carbon Seamless Steel Pipe For Boiler ST35-ST CNBM System 4
High-quality Carbon Seamless Steel Pipe For Boiler ST35-ST CNBM

High-quality Carbon Seamless Steel Pipe For Boiler ST35-ST CNBM

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 pc
Supply Capability:
30 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details

Thickness:

3 - 60 mm

Section Shape:

Round

Outer Diameter:

21.3 - 1220 mm



Secondary Or Not:

Non-secondary

Application:

fluid pipe,boiler pipe, structural pipe, oil/gas/water pipe etc

Technique:

Hot Rolled

Certification:

ISO9001-2000, ISO14000, ISO18000 , API 5L

Surface Treatment:

Painted, Oiled, galvanized or phosphate etc

Special Pipe:

API Pipe

Alloy Or Not:

Is Alloy

Technique::

Hot rolled or cold rolled

Special pipe::

API/ ASME/thickwall/oil/gas/water pipe

Length::

3-12m

Treatment of two ends::

Beveled end , plain end etc

Brand::

Bai Chuan

Third Party Inspection::

BV, SGS etc.

Schedule::

SCH10-SCH160, XS, XXS

Other Material::

10#, 20#, 16Mn, Q345 etc

Material Type::

Carbon steel/ Low alloy steel

Producing standard::

American/Japanese/ German/ Britain/ Chinese standard

Grade:

A53(A,B),A106(B,C),A210,API J55,St37,STPG42,A53-A369,API J55-API P110,ST35-ST52

Standard:

BS EN10296,JIS G3452-2004





1. Out Diameter:

21.3mm-1220mm 

2. Wall Thickness:

3mm-60mm

3. Length:

3m-12m

4. Producing Standard:

  • American ASME B36.10M, ASTM, API 5L, API 5CT

  • Japanese JIS

  • German DIN

  • Chinese GB

  • BS standard

5. Main Material:

(Carbon Steel & Low Alloy steel)

  • ASTM A53, A106, A210, A252, A333 etc;

  • X42, X46, X52, X60, X65, X70 etc;

  • JIS STPG42, G3454, G3456 etc;

  • German St37, St42, St45, St52, DIN1626, DIN17175

  • Chinese 20#, Q345, 16Mn etc.

6. Special specifications:

Available according to customer’s requirements and quantity.

7. End Shape:

Beveled end , plain end, varnished, or adding plastic caps to protect the two ends as per customer’s requirements.

8. Surface treatment:

Painted, Oiled, galvanized, phosphate etc.

9. Usage:

  • Widely used in the mechanical treatment field, petrochemical industry, transport and construction field

  • Ordinary structural purposes and mechanic structural purposes, for example in construction field, fulcrum bearing etc;

  • The transportation of fluids in the projects and big equipments, for example transport of water, oil, gas etc

  • Can be used in low and medium pressure boiler for the transportation of fluids, for example steam tube, big smoke tube, small smoke tube, generating tube etc

10. Certificates:

ISO9001-2000, ISO14000, ISO18000, API 5L certificate

11. Third party inspection:

Welcome you to send a third party inspecting company (BV, SGS etc) to check the quality of our final products.

12. Pictures:

our producing flow chart, our factory, production line, inspecting equipments, our products are listed below for your reference.


Q: How are steel pipes used in the construction of dams and water reservoirs?
Steel pipes are commonly used in the construction of dams and water reservoirs due to their durability, strength, and ability to withstand high pressure and heavy loads. These pipes are utilized in various important aspects of dam and reservoir construction. One of the main uses of steel pipes in these structures is for the transportation of water. Steel pipes are used to convey water from the source, such as a river or stream, to the reservoir or dam. These pipes are designed to withstand the high water pressure and ensure that there is a continuous flow of water to the reservoir. The durability of steel pipes allows them to remain intact even in harsh conditions and environments. In addition to transporting water, steel pipes are also used for drainage purposes. They are used to create drainage systems that help regulate the water level in the reservoir or dam. These pipes are strategically placed to control the flow of water and prevent any potential flooding or overflow. Steel pipes are also used in the construction of the spillways and outlets in dams and reservoirs. Spillways are designed to release excess water from the reservoir during heavy rainfall or when the water level is too high. Steel pipes are used in the construction of these spillways to provide a controlled path for the water to flow out of the reservoir, preventing any damage to the dam or surrounding areas. Furthermore, steel pipes are utilized in the construction of penstocks, which are large pipes that transport water from the reservoir to the turbines in a hydropower plant. The pressure generated by the water in these pipes is used to drive the turbines and generate electricity. The strength and durability of steel pipes are crucial for ensuring the smooth and efficient operation of hydropower plants. Overall, steel pipes play a vital role in the construction of dams and water reservoirs. Their durability, strength, and ability to withstand high pressure make them an ideal choice for various aspects of these structures, including water transportation, drainage systems, spillways, and penstocks.
Q: How are steel pipes used in the manufacturing of wastewater treatment systems?
Steel pipes are commonly used in the manufacturing of wastewater treatment systems as they provide a durable and corrosion-resistant material for transporting and distributing water and chemicals within the system. They are used for various purposes such as conveying wastewater, carrying treated water to different stages of the treatment process, and transferring chemicals for disinfection or filtration. Additionally, steel pipes are often used for constructing the framework and support structures of wastewater treatment systems due to their strength and versatility.
Q: What is the difference between carbon steel and cast iron pipes?
Carbon steel and cast iron pipes are both widely used in various industries for different applications. The main difference between these two types of pipes lies in their composition and properties. 1. Composition: Carbon steel pipes are primarily made of iron and carbon, with trace amounts of other elements such as manganese, phosphorus, and sulfur. On the other hand, cast iron pipes are made by melting iron and adding a small amount of carbon, usually between 2-4%. 2. Strength and Durability: Carbon steel pipes are generally stronger and more durable than cast iron pipes. Carbon steel has a higher tensile strength, which means it can withstand higher pressures and is less likely to be damaged or deformed. Cast iron, although strong, is more brittle and prone to cracking. 3. Corrosion Resistance: Carbon steel pipes require additional coatings or treatments to protect them from corrosion. Without proper protection, carbon steel pipes can be susceptible to rust and corrosion, especially when exposed to moisture or aggressive substances. On the other hand, cast iron pipes have inherent corrosion resistance due to the formation of a protective layer of iron oxide (rust) on their surface. 4. Weight and Installation: Cast iron pipes are typically heavier than carbon steel pipes, making them more challenging to handle and install. Carbon steel pipes are comparatively lighter, allowing for easier transportation and installation. 5. Noise and Vibration: Cast iron pipes have superior sound-deadening properties, making them quieter when fluids flow through them. On the contrary, carbon steel pipes tend to transmit more noise and vibrations. 6. Cost: Cast iron pipes are generally more expensive than carbon steel pipes due to the additional manufacturing processes and the higher cost of raw materials. In summary, the main differences between carbon steel and cast iron pipes lie in their composition, strength, corrosion resistance, weight, noise transmission, and cost. The choice between the two depends on the specific application, budget, and environmental factors.
Q: How are steel pipes used in the construction of industrial facilities?
Steel pipes are commonly used in the construction of industrial facilities for various purposes such as transporting fluids, gases, and steam, as well as providing structural support and carrying electrical wiring. They are durable, resistant to corrosion, and can withstand high pressure and temperature, making them ideal for industrial settings.
Q: What are the different methods of pipe joining for steel pipes?
Steel pipes can be joined using various methods, each with its own benefits and drawbacks. These methods include: 1. Butt Welding: Two steel pipes are welded together by beveling or facing their ends to form a V-groove. Molten metal is then used to fill the groove, creating a strong and long-lasting joint. 2. Socket Welding: A socket is welded onto the end of a steel pipe, and another pipe is inserted into the socket and welded in place. This method creates a leak-proof and corrosion-resistant joint. 3. Threaded Joint: Steel pipes can be joined by threading the ends and using a threaded coupling or union to connect them. This method is commonly used for smaller pipes and allows for easy disassembly and reassembly. 4. Flanged Joint: For larger pipes, a flange is attached to the end of each pipe, and the flanges are fastened together with gaskets using bolts. This method is commonly used in industries such as oil and gas, water treatment, and chemical processing. 5. Grooved Joint: Grooving machines are used to create a groove on the outside of the pipe. A coupling or fitting is then inserted into the groove and secured with bolts or clamps. This method is quick to install and allows for easy disassembly and reassembly. The choice of pipe joining method depends on factors such as pipe size, application, and desired strength and durability. Each method has its own advantages and disadvantages.
Q: What are the advantages of using steel pipes in the manufacturing of appliances?
There are several advantages of using steel pipes in the manufacturing of appliances. Firstly, steel pipes offer high strength and durability, making them ideal for handling heavy loads and withstanding harsh conditions. Secondly, steel pipes have excellent corrosion resistance, ensuring longevity and preventing damage from exposure to moisture or chemicals. Furthermore, steel pipes provide a smooth interior surface, promoting efficient flow of liquids or gases within the appliances. Lastly, steel pipes are recyclable, making them a sustainable choice and contributing to environmental conservation.
Q: Can steel pipes be painted or coated?
Certainly, steel pipes have the capability to undergo painting or coating procedures. It is a prevalent method employed to safeguard them against corrosion, enhance their visual appeal, or comply with particular industry standards. The process consists of an initial step of diligently cleaning the pipes to eliminate any dirt, grease, or rust. Subsequently, a primer is applied, followed by the desired paint or coating. The selection of paint or coating is contingent upon the envisioned purpose of the pipes. For instance, epoxy coatings are frequently utilized for water or wastewater pipelines, while high-temperature resistant coatings are employed for pipes utilized in industrial environments. In conclusion, the act of painting or coating steel pipes has the potential to augment their resilience and overall performance.
Q: Is the diameter of the steel tube indicated by the outer diameter by the wall thickness or by the inside diameter by the wall thickness?
The specification for steel tubes is the outer diameter multiplied by the wall thickness.Generally speaking, the diameter of the pipe can be divided into outer diameter (De), inner diameter (D) and nominal diameter (DN).
Q: Can steel pipes be used for gas transmission pipelines?
Yes, steel pipes can be used for gas transmission pipelines. Steel is a commonly used material for gas pipelines due to its strength, durability, and ability to withstand high pressure and extreme temperatures. It is resistant to corrosion and can effectively transport natural gas or other gases over long distances. Additionally, steel pipes can be welded together to create a continuous and leak-proof pipeline, ensuring the safe and efficient transmission of gas.
Q: How are steel pipes protected against soil movement or settlement?
Steel pipes can be protected against soil movement or settlement through the use of various measures such as proper design and installation techniques, including the use of appropriate bedding materials, backfilling with compacted soil, and the addition of protective coatings or linings. Additionally, the implementation of geotechnical investigations and monitoring systems can help identify potential soil movement or settlement issues in advance, allowing for proactive measures to be taken to mitigate any potential damage to the steel pipes.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords