• High-quality Carbon Seamless Steel Pipe For Boiler ST35-ST CNBM System 1
  • High-quality Carbon Seamless Steel Pipe For Boiler ST35-ST CNBM System 2
  • High-quality Carbon Seamless Steel Pipe For Boiler ST35-ST CNBM System 3
  • High-quality Carbon Seamless Steel Pipe For Boiler ST35-ST CNBM System 4
High-quality Carbon Seamless Steel Pipe For Boiler ST35-ST CNBM

High-quality Carbon Seamless Steel Pipe For Boiler ST35-ST CNBM

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 pc
Supply Capability:
30 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details

Thickness:

3 - 60 mm

Section Shape:

Round

Outer Diameter:

21.3 - 1220 mm



Secondary Or Not:

Non-secondary

Application:

fluid pipe,boiler pipe, structural pipe, oil/gas/water pipe etc

Technique:

Hot Rolled

Certification:

ISO9001-2000, ISO14000, ISO18000 , API 5L

Surface Treatment:

Painted, Oiled, galvanized or phosphate etc

Special Pipe:

API Pipe

Alloy Or Not:

Is Alloy

Technique::

Hot rolled or cold rolled

Special pipe::

API/ ASME/thickwall/oil/gas/water pipe

Length::

3-12m

Treatment of two ends::

Beveled end , plain end etc

Brand::

Bai Chuan

Third Party Inspection::

BV, SGS etc.

Schedule::

SCH10-SCH160, XS, XXS

Other Material::

10#, 20#, 16Mn, Q345 etc

Material Type::

Carbon steel/ Low alloy steel

Producing standard::

American/Japanese/ German/ Britain/ Chinese standard

Grade:

A53(A,B),A106(B,C),A210,API J55,St37,STPG42,A53-A369,API J55-API P110,ST35-ST52

Standard:

BS EN10296,JIS G3452-2004





1. Out Diameter:

21.3mm-1220mm 

2. Wall Thickness:

3mm-60mm

3. Length:

3m-12m

4. Producing Standard:

  • American ASME B36.10M, ASTM, API 5L, API 5CT

  • Japanese JIS

  • German DIN

  • Chinese GB

  • BS standard

5. Main Material:

(Carbon Steel & Low Alloy steel)

  • ASTM A53, A106, A210, A252, A333 etc;

  • X42, X46, X52, X60, X65, X70 etc;

  • JIS STPG42, G3454, G3456 etc;

  • German St37, St42, St45, St52, DIN1626, DIN17175

  • Chinese 20#, Q345, 16Mn etc.

6. Special specifications:

Available according to customer’s requirements and quantity.

7. End Shape:

Beveled end , plain end, varnished, or adding plastic caps to protect the two ends as per customer’s requirements.

8. Surface treatment:

Painted, Oiled, galvanized, phosphate etc.

9. Usage:

  • Widely used in the mechanical treatment field, petrochemical industry, transport and construction field

  • Ordinary structural purposes and mechanic structural purposes, for example in construction field, fulcrum bearing etc;

  • The transportation of fluids in the projects and big equipments, for example transport of water, oil, gas etc

  • Can be used in low and medium pressure boiler for the transportation of fluids, for example steam tube, big smoke tube, small smoke tube, generating tube etc

10. Certificates:

ISO9001-2000, ISO14000, ISO18000, API 5L certificate

11. Third party inspection:

Welcome you to send a third party inspecting company (BV, SGS etc) to check the quality of our final products.

12. Pictures:

our producing flow chart, our factory, production line, inspecting equipments, our products are listed below for your reference.


Q:How to distinguish between steel pipe and spiral pipe material?
Steel pipe according to the pipe material (ie steel) can be divided into: carbon tube and alloy tube, stainless steel tube.Carbon tube can be divided into ordinary carbon steel tube and high quality carbon structure tube.
Q:Can steel pipes be used for cooling systems?
Steel pipes are a viable option for cooling systems. They are frequently employed in different scenarios, such as cooling systems, because of their robustness, strength, and ability to withstand high temperatures and pressure. Industrial cooling systems, in particular, benefit from steel pipes due to the harsh environmental conditions and corrosive fluids they often encounter. Moreover, steel pipes possess outstanding heat conductivity, which facilitates efficient heat transfer, rendering them a dependable choice for cooling purposes. Furthermore, steel pipes can be easily tailored, joined, and adjusted to fulfill specific cooling system needs. Nevertheless, it is crucial to ensure that the steel pipes utilized are adequately coated or insulated to prevent corrosion and minimize heat dissipation.
Q:What is the difference between ERW (Electric Resistance Welded) and LSAW (Longitudinal Submerged Arc Welded) steel pipes?
ERW steel pipes are manufactured by high-frequency electrical currents passing through the metal, resulting in a welded joint. On the other hand, LSAW steel pipes are produced by submerging a metal plate into a welding zone, creating a welded joint through the use of a welding arc. The main difference lies in the welding process, with ERW pipes being more suitable for small to medium-sized diameters, while LSAW pipes are commonly used for larger diameter and thicker-walled applications.
Q:What are the different testing methods for steel pipes?
There are several testing methods for steel pipes, including visual inspection, ultrasonic testing, magnetic particle testing, dye penetrant testing, radiographic testing, and hydrostatic testing.
Q:Are steel pipes resistant to impact?
Yes, steel pipes are generally resistant to impact due to their strong and durable nature. They can withstand heavy loads and external forces, making them suitable for applications that involve high-pressure environments or potential impact scenarios.
Q:How do you calculate the pipe pressure loss coefficient for steel pipes?
To calculate the pipe pressure loss coefficient for steel pipes, you can use the Darcy-Weisbach equation, which is a widely accepted method for determining the pressure loss in pipes due to friction. The equation is as follows: ΔP = f × (L/D) × (V^2/2g) Where: - ΔP is the pressure loss (in units of pressure, such as psi or Pa) - f is the Darcy friction factor (dimensionless) - L is the length of the pipe (in units of length, such as feet or meters) - D is the diameter of the pipe (in units of length, such as feet or meters) - V is the velocity of the fluid flowing through the pipe (in units of velocity, such as ft/s or m/s) - g is the acceleration due to gravity (in units of acceleration, such as ft/s² or m/s²) The Darcy friction factor (f) is a dimensionless parameter that represents the amount of frictional resistance in the pipe. For steel pipes, the friction factor can be determined using the Moody diagram, which is a graphical representation of the relationship between the Reynolds number (Re) and the friction factor (f) for different pipe roughness. To calculate the pressure loss coefficient, you need to find the value of the friction factor (f) based on the Reynolds number (Re) and the relative roughness of the steel pipe (ε/D). The Reynolds number is given by: Re = (ρ × V × D) / μ Where: - ρ is the density of the fluid (in units of mass per unit volume, such as lb/ft³ or kg/m³) - V is the velocity of the fluid (in units of velocity, such as ft/s or m/s) - D is the diameter of the pipe (in units of length, such as feet or meters) - μ is the dynamic viscosity of the fluid (in units of force per unit area per unit time, such as lb/ft·s or kg/m·s) Once you have the Reynolds number (Re) and the relative roughness (ε/D), you can use the Moody diagram to find the corresponding friction factor (f). The pressure loss coefficient (K) can then be calculated as: K = f × (L/D) Where: - L is the length of the pipe (in units of length, such as feet or meters) - D is the diameter of the pipe (in units of length, such as feet or meters) By using the Darcy-Weisbach equation and the Moody diagram, you can accurately calculate the pressure loss coefficient for steel pipes, which is essential for designing and analyzing fluid flow systems.
Q:What is the typical diameter range for steel pipes?
The typical diameter range for steel pipes varies, but it typically falls between 1/2 inch to 48 inches.
Q:What are the different methods of joining steel pipes together?
There are multiple techniques for connecting steel pipes, each with its own pros and cons. 1. Welding, the most commonly used method, involves heating and applying pressure to fuse the pipe ends. This creates a robust joint, but it necessitates skilled labor and specialized equipment. 2. Threaded connections involve threading the ends and using fittings to connect the pipes. This method is relatively simple and quick, but it may not be as strong as welding and can be prone to leakage if not sealed properly. 3. Flanged connections involve using flanges and bolts to connect the pipes. This allows for easy disassembly and reassembly, making it suitable for applications that require frequent maintenance. Flanged connections are also highly resistant to leakage. 4. Compression fittings involve compressing a ring or ferrule onto the pipe to create a tight seal. This method is straightforward and does not require heat or welding, making it ideal for applications where heat or sparks are prohibited. 5. Grooved connections involve cutting grooves into the pipe ends and using mechanical couplings to secure them. This method is fast, reliable, and allows for easy assembly and disassembly. Grooved connections are commonly used in fire protection systems. 6. Brazing, similar to welding, involves heating the pipe ends and adding filler material to join them. This method is often used for smaller diameter pipes and provides a strong joint, but it requires a high-temperature torch and skilled labor. Each method has its own advantages and is suitable for different applications. The choice of joining method depends on factors such as required strength, ease of installation, maintenance requirements, and pipe type.
Q:How are steel pipes used in the renewable energy sector?
Steel pipes are widely used in the renewable energy sector for various applications. They are commonly used for the construction of wind turbine towers, providing structural support and stability. Steel pipes are also used in the construction of solar power plants, where they are utilized for the installation of solar panels, mounting structures, and support systems. Additionally, steel pipes are employed in geothermal energy projects, helping to extract and transfer hot water or steam from underground reservoirs. Overall, steel pipes play a crucial role in the renewable energy sector by facilitating the efficient generation and transmission of clean energy.
Q:What is the role of steel pipes in power plants?
Steel pipes play a crucial role in power plants as they are used for transporting various fluids, such as water, steam, and fuel, throughout the facility. These pipes are designed to withstand high temperatures, pressure, and corrosive environments, ensuring a safe and efficient operation of power generation equipment. They facilitate the circulation of cooling water, carry steam to drive turbines, and transport fuel to boilers, helping to generate electricity in power plants.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords