• Deformed bars Hot Rolled with Material GB HRB400 System 1
  • Deformed bars Hot Rolled with Material GB HRB400 System 2
  • Deformed bars Hot Rolled with Material GB HRB400 System 3
Deformed bars Hot Rolled with Material GB HRB400

Deformed bars Hot Rolled with Material GB HRB400

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

 

OKorder is offering high quality Hot Rolled Rebars at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

 

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

Label: to be specified by customer, generally, each bundle has 1-2 labels

 

Product Advantages:

OKorder's Hot Rolled Rebars are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: HRB400 – HRB500

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled

 

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥400

≥570

≥14

 

Theoretical weight and section area of each diameter as below for your information:

 

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m bar(kg)

6

28.27

0.222

2.664

8

50.27

0.395

4.74

10

78.54

0.617

7.404

12

113.1

0.888

10.656

14

153.9

1.21

14.52

16

201.1

1.58

18.96

18

254.5

2.00

24

20

314.2

2.47

29.64

22

380.1

2.98

35.76

25

490.9

3.85

46.2

28

615.8

4.83

57.96

32

804.2

6.31

75.72

36

1018

7.99

98.88

40

1257

9.87

118.44

50

1964

15.42

185.04

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: Can stainless steel rust?

A2: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.

Q3: What is the normal tolerance of Hot Rolled Mild Steel Angle Beams for Structures and for Buildings?

A3: Normally 3%-5%, but we can also produce the goods according to the customers' requests. 

 

Images

 

Deformed bars Hot Rolled with Material GB HRB400

 

Deformed bars Hot Rolled with Material GB HRB400

Q:How are steel rebars used in tunnel construction?
Steel rebars are used in tunnel construction to provide reinforcement and strength to the concrete structures. These rebars are embedded within the concrete walls, floors, and ceilings of the tunnel to enhance its structural integrity and prevent cracks or collapses.
Q:Can steel rebars be used in nuclear power plants?
Yes, steel rebars can be used in nuclear power plants. Steel rebars are commonly used in construction projects, including nuclear power plants, to reinforce concrete structures. These rebars provide added strength and stability to the concrete, enhancing its ability to withstand various loads and forces. However, it is important to note that the use of steel rebars in nuclear power plants must comply with specific regulations and standards to ensure the safety and integrity of the plant. These regulations may include requirements for the type of steel used, its composition, and mechanical properties. Additionally, the rebars must undergo rigorous quality control measures to ensure they meet the required standards and are free from any defects that could compromise the structural integrity of the plant. Overall, steel rebars can be safely used in nuclear power plants as long as they meet the necessary regulatory requirements and quality control measures.
Q:Can steel rebars be used in structures with high chloride exposure?
Steel rebars should not be used in structures with high chloride exposure as the chloride ions can penetrate the steel and cause corrosion, compromising the structural integrity of the building. Instead, alternative materials such as epoxy-coated rebars or stainless steel rebars should be used in such environments.
Q:What is the effect of corrosion on the strength of steel rebars?
Corrosion has a detrimental effect on the strength of steel rebars. As corrosion occurs, it causes the steel rebar to rust and deteriorate, leading to a loss of structural integrity. This can significantly weaken the rebars, compromising their ability to support loads and increasing the risk of structural failure. Regular inspection and maintenance are crucial to prevent corrosion and maintain the strength of steel rebars.
Q:What are the different types of steel rebars available in the market?
There are several types of steel rebars available in the market, including mild steel rebar, high-strength deformed steel rebar, epoxy-coated rebar, galvanized rebar, stainless steel rebar, and glass-fiber-reinforced polymer (GFRP) rebar. Each type has unique properties and is used for specific applications in construction and infrastructure projects.
Q:How do steel rebars help in distributing load in a structure?
Steel rebars, also known as reinforcement bars, play a crucial role in distributing load in a structure. They are primarily used in reinforced concrete structures to enhance their strength and durability. Rebars are placed strategically within the concrete to counteract the tensile forces that the structure may encounter. Concrete, while strong in compression, is weak in tension. When a load is applied to a structure, such as a building or a bridge, it creates tensile forces that can cause the concrete to crack and fail. By incorporating steel rebars into the concrete, these tensile forces are effectively distributed and transferred to the rebars, preventing the structure from experiencing excessive deflection or collapse. The presence of steel rebars within the concrete creates a composite material that combines the compressive strength of concrete with the high tensile strength of steel. As a result, the structure becomes capable of withstanding a wide range of loads, including dead loads (the weight of the structure itself), live loads (such as occupants or furniture), and environmental loads (like wind or earthquakes). Additionally, rebars also help to control and minimize the propagation of cracks within the concrete. When a crack forms under load, the rebars act as a barrier, preventing the crack from spreading further and compromising the integrity of the structure. This inhibits the development of larger cracks, which could potentially lead to structural failure. Moreover, steel rebars provide stability and reinforcement at critical locations within the structure, such as corners, joints, and areas prone to high stress. By reinforcing these vulnerable areas, the rebars ensure that the load is evenly distributed throughout the structure, reducing the risk of localized failures. In summary, steel rebars are essential in distributing load in a structure by absorbing tensile forces, enhancing the strength of concrete, preventing cracks from propagating, and providing reinforcement at critical locations. They significantly contribute to the overall structural integrity and safety, making them a vital component in construction projects.
Q:What are the cost implications of using steel rebars in construction?
The cost implications of using steel rebars in construction can vary depending on several factors. Firstly, the cost of steel rebars themselves will have an impact on the overall construction budget. The price of steel rebars can fluctuate due to factors such as global demand, availability of raw materials, and market conditions. Therefore, the cost of steel rebars can differ from one project to another. Secondly, the quantity of steel rebars required for a construction project will also affect the cost implications. The size, complexity, and load-bearing requirements of the structure will determine the amount of steel rebars needed. As a result, larger and more intricate projects will require a higher quantity of steel rebars, which can increase the overall construction costs. Moreover, the installation and labor costs associated with steel rebars should be considered. Experienced and skilled labor is required to properly install and secure the rebars in place, ensuring structural integrity. The cost of labor can vary depending on the location, availability of skilled workers, and project timeline. Additionally, the equipment and tools necessary for handling and cutting steel rebars may incur additional expenses. Furthermore, the longevity and durability of steel rebars can have long-term cost implications. Steel is known for its strength, resistance to corrosion, and ability to withstand harsh environmental conditions. By using steel rebars, structures can have a longer lifespan and require less maintenance and repairs over time. This can result in significant cost savings in terms of maintenance and replacement expenses. However, it is also important to consider potential cost implications related to sustainability and environmental impact. The production of steel rebars requires substantial energy and resources, which can contribute to carbon emissions and environmental degradation. In some cases, alternative construction materials or methods may be more cost-effective in terms of sustainability and long-term environmental considerations. In summary, the cost implications of using steel rebars in construction depend on factors such as the price of steel, quantity required, labor costs, installation expenses, and long-term durability. While steel rebars offer numerous benefits in terms of strength and longevity, it is crucial to consider the project's specific requirements and balance them with potential economic and sustainability considerations.
Q:What is the tensile strength of steel rebars?
The tensile strength of steel rebars typically ranges from 400 to 600 megapascals (MPa).
Q:What is the maximum allowable percentage of rust on steel rebars?
The maximum allowable percentage of rust on steel rebars is typically 5%. However, this may vary depending on specific industry standards and project requirements.
Q:Can steel rebars be used for both residential and commercial constructions?
Yes, steel rebars can be used for both residential and commercial constructions. Steel rebars are commonly used as reinforcement in concrete structures, providing strength and stability to the building. Whether it is a residential house or a commercial building, steel rebars are essential components in the construction process to ensure the durability and structural integrity of the structure.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords