• Cold Rolled Rebar 16mm System 1
Cold Rolled Rebar 16mm

Cold Rolled Rebar 16mm

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Cold Rolled Techniques

Yield Point: 545-565mpa

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger.

Q:What are the different methods of joining steel rebars in a structure?
The different methods of joining steel rebars in a structure include lap splicing, mechanical splicing, and welded splicing.
Q:How do steel rebars improve the structural integrity of concrete?
The structural integrity of concrete is greatly improved by steel rebars in several ways. Firstly, they bolster the tensile strength of concrete, which is otherwise feeble in tension. While concrete excels in compressive strength, it lacks the ability to withstand pulling or stretching forces. By inserting steel rebars into the concrete, the overall tensile strength of the structure is significantly heightened. The steel rebars function as reinforcement by dispersing stress and load across a wider area, preventing cracks and fractures from spreading through the concrete. They establish a sturdy bond between the concrete and the reinforcement, enabling the structure to bear heavy loads and withstand bending, shearing, and other forces that could jeopardize its stability. Furthermore, steel rebars aid in managing and mitigating the impacts of shrinkage and thermal expansion and contraction that occur in concrete. These occurrences frequently lead to cracking and structural damage. The steel rebars help restrict the movement of the concrete, lessening the likelihood of crack formation and ensuring the overall integrity of the structure. Moreover, steel rebars prolong the durability and lifespan of concrete structures. They possess a high resistance to corrosion, which is particularly crucial in environments with elevated moisture levels, chemical exposure, or contact with saltwater. The presence of steel rebars safeguards the concrete from deterioration and extends the lifespan of the structure. In conclusion, steel rebars play a vital role in enhancing the structural integrity of concrete by fortifying its tensile strength, distributing stress and loads, preventing cracks, managing shrinkage, resisting bending and shearing forces, and increasing durability. They provide a dependable and efficient reinforcement system that guarantees the stability and longevity of concrete structures.
Q:How are steel rebars stored and transported?
Steel rebars are typically stored and transported in bundles or coils. They are commonly stored in open yards or warehouses, with proper stacking and support to prevent damage or deformation. During transportation, rebars are loaded onto trucks or flatbed trailers, secured with straps or chains to ensure stability, and transported to construction sites or steel fabrication facilities.
Q:Can steel rebars be used in stadium and sports arena construction?
Yes, steel rebars can be used in stadium and sports arena construction. Rebars, which are short for reinforcing bars, are commonly used in concrete structures to provide strength and durability. Stadiums and sports arenas are large structures that require the ability to withstand heavy loads and forces, such as the weight of the stands and the impact from crowds and sporting events. Steel rebars are an ideal choice for reinforcing the concrete used in these structures because of their high tensile strength and ability to distribute and resist these loads effectively. Additionally, steel rebars can be easily shaped and bent to conform to the specific design requirements of the stadium or sports arena, making them a versatile and practical choice for construction projects of this scale.
Q:What is the process of anchoring steel rebars in concrete?
The process of anchoring steel rebars in concrete involves several steps to ensure a strong and secure bond between the rebar and the concrete. First, the concrete surface where the rebar will be anchored needs to be prepared. This typically involves cleaning the surface to remove any dirt, dust, or debris that could interfere with the bonding process. It is also important to ensure that the concrete is fully cured and has reached the required strength before proceeding. Next, the rebar is cut to the desired length and shape according to the construction plans. It is important to follow the specified dimensions and placement requirements to ensure proper reinforcement and structural integrity. After the rebar is prepared, it is usually placed in the desired position within the concrete formwork. The rebar should be positioned at the correct depth and spacing as specified by the design. This is typically accomplished by using plastic or metal chairs, spacers, or tie wire to hold the rebar in place. Once the rebar is properly positioned, the next step is to secure it to the concrete. One common method of anchoring the rebar is by using mechanical anchors or rebar couplers. These devices are designed to create a strong connection between the rebar and the concrete by utilizing various mechanisms such as threading, crimping, or expansion. Alternatively, another method of anchoring the rebar is by using adhesive or cementitious grouts. These materials are applied to the rebar and then inserted into pre-drilled holes in the concrete. The adhesive or grout helps to bond the rebar to the concrete and provides additional reinforcement. Finally, after the rebar is anchored, the concrete is poured or placed around it. The concrete should be properly consolidated to ensure that it fully surrounds and encases the rebar. This can be achieved through techniques such as vibrating the concrete or using specialized equipment. Overall, the process of anchoring steel rebars in concrete involves careful planning, preparation, and execution to ensure a reliable and durable bond between the rebar and the concrete. Following industry standards and design specifications is crucial to achieve the desired structural strength and integrity.
Q:How do steel rebars prevent concrete structures from spalling?
The reinforcement and increased strength provided by steel rebars prevent spalling in concrete structures. Spalling occurs when the concrete surface cracks and breaks off due to internal pressure from factors like temperature changes, moisture, or structural loads. When steel rebars are embedded in the concrete, they act as a support system that evenly distributes applied loads throughout the structure. This prevents localized stress concentrations, which can cause spalling, by absorbing and dissipating the load. By reinforcing the concrete, rebars enhance its ability to withstand external forces and improve its tensile strength. Furthermore, steel rebars help control crack formation in the concrete. Concrete is a brittle material with low tensile strength, making it prone to cracking under stress. However, rebars hinder crack propagation by bridging them and transferring the stress to the surrounding concrete. This prevents the cracks from spreading and results in a more durable and resilient structure. Additionally, steel rebars protect against corrosion. Concrete's natural alkalinity forms a protective layer on the steel surface, preventing rusting. This alkaline environment acts as a barrier against corrosion, ensuring the rebars maintain their structural integrity over time. By avoiding corrosion, the rebars can continue to reinforce the concrete and prevent spalling. In conclusion, steel rebars are essential in preventing spalling in concrete structures by providing reinforcement, improving tensile strength, controlling crack formation, and protecting against corrosion. They enhance the stability and durability of the concrete, allowing it to withstand external pressures and maintain its integrity for an extended period.
Q:What is the process of pre-stressing steel rebars?
The process of pre-stressing steel rebars involves applying a predetermined amount of stress or force to the rebars before they are subjected to loading. This technique is commonly used in the construction industry to improve the structural strength and durability of concrete structures. The process typically starts with the selection of high-strength steel rebars that have good tensile strength properties. These rebars are usually made from carbon steel or alloy steel and come in various sizes and shapes, depending on the specific application. Once the rebars are selected, they are cleaned and coated with a protective layer to prevent corrosion. After that, the rebars are placed into the desired position within the concrete structure, such as beams, columns, or slabs, according to the design specifications. Next, the pre-stressing process begins. There are two primary methods for pre-stressing steel rebars: pre-tensioning and post-tensioning. In pre-tensioning, the rebars are initially tensioned by fixing them to an anchorage point or a strong frame. The opposite end of the rebars is then pulled using hydraulic jacks or mechanical devices, applying a significant amount of force. Once the desired stress is achieved, the rebars are secured in their stressed position by casting concrete around them. After the concrete has hardened, the jacks or devices are released, transferring the stress to the rebars. In post-tensioning, the rebars are first placed into the concrete structure without any initial tension. After the concrete has hardened, a series of ducts or channels are created within the structure, running along the path of the rebars. High-strength steel strands or cables are then inserted through these ducts. The strands are anchored at one end of the structure and tensioned using hydraulic jacks or similar devices. This tensioning process applies a force to the rebars, which is transferred to the concrete, compressing it. Once the desired stress is achieved, the strands are secured and the ducts are filled with grout or mortar to protect them from corrosion. Both pre-tensioning and post-tensioning techniques result in pre-stressed steel rebars that provide several benefits to concrete structures. These include increased load-carrying capacity, improved resistance to cracking and deformation, enhanced durability, and overall better structural performance. The process of pre-stressing steel rebars is a vital aspect of modern construction practices, ensuring the longevity and safety of various types of concrete structures.
Q:Can steel rebars be used in bridge rehabilitation projects?
Yes, steel rebars can be used in bridge rehabilitation projects. Rebars are commonly used to strengthen and reinforce existing concrete structures, including bridges, to improve their load-carrying capacity and overall structural integrity.
Q:How do steel rebars affect the overall crack width of concrete structures?
Steel rebars affect the overall crack width of concrete structures in several ways. Firstly, rebars provide reinforcement to the concrete, making it stronger and more resistant to cracking. The presence of rebars helps distribute the tensile forces within the concrete, preventing cracks from spreading and widening. This is because when the concrete is subjected to tensile stress, the rebars take on a significant portion of the load, reducing the stress on the concrete itself and minimizing crack formation. Moreover, the use of rebars also influences the spacing and size of cracks in concrete structures. By adding rebars at specific intervals and in appropriate sizes, engineers can control the crack width of the concrete. The rebars act as barriers that limit the width of cracks by providing resistance to the tensile forces acting on the concrete. This is particularly important in structures that are exposed to heavy loads or external forces, as it helps maintain the structural integrity and durability of the concrete. Additionally, steel rebars can also affect the propagation of cracks in concrete structures. When cracks do occur, the presence of rebars can help prevent the cracks from extending further. The rebars act as anchors, holding the cracked sections of the concrete together and preventing the cracks from spreading. This is crucial in ensuring the overall stability of the structure and minimizing the risk of structural failure. In summary, steel rebars play a vital role in influencing the overall crack width of concrete structures. They enhance the strength of the concrete, distribute tensile forces, control crack spacing and size, and prevent crack propagation. By incorporating rebars into concrete structures, engineers can effectively manage and reduce the formation and severity of cracks, ensuring the longevity and safety of the structures.
Q:What is the effect of steel rebars on the seismic performance of a structure?
Steel rebars, also referred to as reinforcing bars, play a crucial role in enhancing the seismic performance of structures by improving their overall strength and ductility. When structures are subjected to seismic forces, they undergo intense shaking and vibrations. The inclusion of steel rebars significantly enhances the strength and ductility of the structure, enabling it to withstand and absorb the energy released during an earthquake. The primary effect of steel rebars is their capacity to augment the tensile strength of concrete. Concrete is strong when compressed but weak when subjected to tension. By embedding steel rebars within the concrete, the composite material becomes capable of resisting tensile forces that may occur during an earthquake. This prevents the concrete from cracking or fracturing, ensuring the structure remains intact and functional. Furthermore, steel rebars act as a reinforcement mechanism by distributing the seismic load uniformly across the entire structure. During an earthquake, the shaking motion is dispersed throughout the building, minimizing stress concentration in specific areas. This redistribution of forces helps to maintain the overall stability of the structure, preventing localized failure and collapse. In addition, the presence of steel rebars enhances the ductility of the structure. Ductility refers to the material's ability to deform under stress without breaking. When seismic forces act on a building, the steel rebars provide flexibility and allow for controlled deformation. This plastic behavior aids in dissipating the energy generated during an earthquake, reducing the impact on the structure and minimizing potential damage. Moreover, steel rebars also contribute to the overall stiffness of the structure. By reinforcing concrete components such as columns, beams, and walls, the rigidity of the entire system is increased. This stiffness helps to limit displacement and deformation of the structure, mitigating the risk of structural failure and ensuring the safety of occupants during a seismic event. To summarize, the presence of steel rebars in a structure significantly improves its seismic performance by enhancing concrete's tensile strength, distributing seismic load, improving ductility, and increasing overall stiffness. These effects collectively enhance the structure's ability to resist and withstand the forces generated during an earthquake, ensuring the integrity of the structure and the safety of its occupants.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords