• Chrome Price Q235 CNBM Steel Billets with High Quality System 1
  • Chrome Price Q235 CNBM Steel Billets with High Quality System 2
  • Chrome Price Q235 CNBM Steel Billets with High Quality System 3
  • Chrome Price Q235 CNBM Steel Billets with High Quality System 4
  • Chrome Price Q235 CNBM Steel Billets with High Quality System 5
  • Chrome Price Q235 CNBM Steel Billets with High Quality System 6
Chrome Price Q235 CNBM Steel Billets with High Quality

Chrome Price Q235 CNBM Steel Billets with High Quality

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
5000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Carbon Steel
Shape:
Steel Billets

Product Description 

GRADESIZEAPPLICATION
Q235100mm*100mm*6mREBAR
120mm*120mm*6m
130mm*130mm*6m/12m
150mm*150mm*6m/12m

 

Chemical Compositon

Q235C (%)Si (%)Mn (%)P(%)S(%)
0.14-0.220.15-0.300.40-0.650.040% Max    0.05Max

 

Company Information:

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

 

 Packing & Delivery

1. Packaging: seaworthy package or as required 

2. Delivery: 35-45 days or based on quantity

 

Products Show

Chrome Price Q235 CNBM Steel Billets with High Quality

 

Workshop

Chrome Price Q235 CNBM Steel Billets with High Quality

FAQ:

1.Your advantages?

Professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent    

customer solution proposale

2. Test & Certificate?

SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3. Factory or Trading Company?

CNBM is a trading company but we have so many protocol factories and CNBM works as a trading   department

of  these factories. Also CNBM is the holding company of many factories.

4. Payment Terms?

30% TT as deposit and 70% before delivery.

Irrevocable L/C at sight.

5. Trading Terms?

EXW, FOB, CIF, FFR, CNF

6. After-sale Service?

CNBM provides the services and support you need for every step of our cooperation. We're the business

partner you can trust.

For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q:Can special steel be used in aerospace turbine components?
Aerospace turbine components, like blades, vanes, and disks, need strong materials to withstand tough conditions. Special steel, also known as high-performance alloy steel, fits the bill. It has excellent mechanical properties, like high strength, hardness, and temperature resistance. These qualities make it perfect for aerospace turbine components, which face extreme temperatures, pressures, and stress. Jet engines rely on turbine components to work properly, so they need materials that can handle the tough conditions. Special steel alloys, like nickel-based superalloys, are commonly used because they can maintain their strength and integrity at high temperatures. Plus, special steel is lightweight but strong, so it helps make durable yet light turbine components. This improves the efficiency and performance of aerospace systems. Special steel alloys also resist corrosion, oxidation, and fatigue, which are crucial for the long-term reliability and safety of turbine components. These materials go through rigorous testing and certification to meet aviation industry standards. In conclusion, special steel is a great choice for aerospace turbine components. Its exceptional mechanical properties and resistance to extreme conditions make it reliable and safe. It plays a vital role in ensuring the efficiency and safety of turbine systems in aerospace applications.
Q:What are the different surface finishing techniques for special steel parts?
Special steel parts can undergo various surface finishing techniques to enhance their appearance, protect against corrosion, and improve overall performance. Some commonly utilized methods include: 1. Achieving a smooth and glossy surface on the steel part through polishing, using abrasives. This technique not only enhances aesthetics but also enhances resistance against corrosion. 2. Plating involves depositing a layer of metal onto the steel part's surface, with options such as chrome, nickel, and zinc. This technique provides additional protection against corrosion, improves wear resistance, and can offer desired color or finish. 3. Powder coating entails electrostatically applying a dry powder to the steel part's surface, followed by heat curing. The melted powder forms a durable and visually appealing coating that provides excellent resistance against corrosion, impact, and chemicals. 4. Anodizing, primarily used for aluminum but applicable to certain special steel parts, creates a controlled oxide layer on the surface. This enhances corrosion resistance, improves appearance, and can even provide insulation. 5. Employing a chemical process known as passivation removes free iron and contaminants from the steel part's surface. This process helps prevent corrosion and enhances resistance against staining or discoloration. 6. Heat treatment involves altering the physical and mechanical properties of the steel part by subjecting it to heating and cooling. This process improves hardness, strength, toughness, and provides desired surface finishes. 7. Through electropolishing, an electrochemical process, a thin layer of metal is removed from the steel part's surface. This technique eliminates surface imperfections, smoothens the part, and enhances corrosion resistance. Choosing the appropriate surface finishing technique is crucial, taking into consideration the specific requirements of the special steel part, including its function, desired appearance, and the environmental conditions it will encounter.
Q:How does special steel contribute to the oil and gas aftermarket industry?
Due to its unique properties and capabilities, special steel plays a vital role in the oil and gas aftermarket industry. Its resistance to corrosion makes it well-suited for use in the harsh and corrosive environments commonly found in this sector. By preventing corrosion, special steel extends the lifespan of equipment and components, reducing the need for frequent replacements and maintenance. Additionally, special steel offers high strength and durability, enabling it to withstand the extreme pressures and temperatures encountered in oil and gas operations. This strength ensures that equipment and components made from special steel can function reliably and efficiently, even under demanding conditions. Moreover, special steel can be customized to meet the specific requirements of the oil and gas industry. With its various grades and compositions, special steel can possess specific properties, such as resistance to sulfide stress cracking, hydrogen embrittlement, and high-temperature oxidation. These tailored properties make special steel suitable for critical applications, including wellheads, pipelines, valves, and other equipment used in the oil and gas aftermarket industry. Furthermore, special steel allows for the production of complex and intricate components that are essential for the oil and gas sector. Its excellent machinability and weldability enable the creation of precision-engineered parts, ensuring the efficient and reliable operation of oil and gas equipment. In conclusion, special steel plays a significant role in the oil and gas aftermarket industry by providing corrosion resistance, high strength, durability, customization options, and the ability to manufacture intricate components. These properties make special steel indispensable in ensuring the safety, reliability, and efficiency of operations in the oil and gas sector.
Q:How does special steel contribute to the manufacturing of springs for automotive applications?
The unique properties and characteristics of special steel play a crucial role in the manufacturing of springs for automotive applications. Springs are essential components in automobiles as they provide suspension and shock absorption, which ensures a comfortable and smooth ride. One of the main advantages of using special steel in spring manufacturing is its high strength and durability. Springs are constantly subjected to stress and repetitive loading, but special steel can withstand these forces without deforming or breaking due to its exceptional strength. This property ensures that the springs can maintain their shape and performance over extended periods of use, guaranteeing reliable functionality. Special steel also offers excellent fatigue resistance, a vital characteristic for automotive springs. Fatigue occurs when a material weakens and eventually fails after repeated loading and unloading cycles. However, special steel is specifically designed to withstand fatigue, allowing the springs to endure constant pressure and stress without prematurely failing. Furthermore, special steel provides superior corrosion resistance, which is particularly important for automotive springs. Cars are exposed to various environmental elements, such as moisture, road salt, and chemicals, which can lead to corrosion and deterioration of the springs. By utilizing special steel with enhanced corrosion resistance, manufacturers can ensure that the springs have a longer lifespan and maintain their performance even in harsh conditions. Additionally, special steel offers versatility in terms of its composition and properties. Manufacturers can choose from a wide range of special steel alloys, each with its own unique characteristics, to meet specific requirements. This flexibility in material selection empowers manufacturers to design and produce springs that are tailored to the specific needs of automotive applications. Some alloys offer greater elasticity, allowing the springs to flex and absorb shocks more effectively, while others provide higher hardness, enhancing the springs' load-bearing capacity. In conclusion, special steel significantly contributes to the manufacturing of springs for automotive applications by providing high strength, durability, fatigue resistance, corrosion resistance, and versatility. These properties enable the production of reliable, long-lasting springs that ensure optimal suspension, shock absorption, and overall performance in vehicles.
Q:What are the different heat-resistant grades of special steel?
There exists a variety of specialized steel grades that possess heat-resistant properties and are specifically engineered to endure elevated temperatures and thermal stress. Some of the commonly utilized heat-resistant grades are as follows: 1. Stainless Steel 310: Renowned for its exceptional resistance against high temperatures, oxidation, and corrosion, stainless steel 310 is capable of withstanding temperatures up to 1100°C (2012°F). It finds extensive application in furnace components, heat treatment baskets, and other heat-intensive scenarios. 2. Inconel 600: Inconel 600 is a nickel-chromium alloy that exhibits remarkable resistance to high temperatures and oxidation. It remains effective within a temperature range spanning from cryogenic levels to 1093°C (2000°F) and is widely employed in gas turbines, heat exchangers, and other environments characterized by elevated temperatures. 3. Hastelloy C-276: Hastelloy C-276, a nickel-molybdenum-chromium alloy, offers outstanding resistance against a broad array of corrosive settings and high temperatures. It can withstand temperatures up to 1093°C (2000°F) and is commonly utilized in chemical processing, power generation, and pollution control applications. 4. Titanium Grade 2: Titanium Grade 2 is a commercially pure titanium alloy that presents favorable resistance to high temperatures and corrosion. It remains effective in temperatures up to 538°C (1000°F) and is frequently employed in heat exchangers, chemical processing equipment, and marine applications. 5. Alloy 617: Alloy 617 is a nickel-chromium-cobalt-molybdenum alloy that showcases exceptional strength and resistance to high-temperature environments. It can endure temperatures up to 1204°C (2200°F) and is commonly utilized in gas turbines, petrochemical plants, and other industries that entail significant heat exposure. These aforementioned examples represent merely a fraction of the heat-resistant grades of specialized steel accessible in the market. The appropriate grade selection relies on the specific temperature requirements, corrosion resistance, and mechanical properties demanded by the application at hand.
Q:How is special steel machined?
Various methods and techniques are utilized to machine special steel, depending on the specific properties and requirements of the steel. Turning, for instance, is a common method where a cutting tool is employed to eliminate material from the rotating steel workpiece. This process is employed to shape the steel and produce cylindrical parts like shafts or rods. Milling, on the other hand, involves the use of rotating multi-point cutting tools to remove material from the steel workpiece. This technique is employed to create flat surfaces, slots, or intricate shapes on the steel. Grinding is yet another frequently used method for machining special steel. It entails the use of abrasive wheels to remove material and achieve a smooth surface finish. This method is often employed for precision machining, where precise tolerances and smooth finishes are necessary. Drilling is also a significant machining process for special steel. It involves using a rotating drill bit to create holes in the steel workpiece. This process can be carried out manually or with the use of CNC (Computer Numerical Control) machines to ensure accurate hole placement. Apart from these methods, other techniques such as broaching, honing, or lapping can also be employed to machine special steel, depending on the specific requirements and desired outcome. It should be noted that machining special steel necessitates specialized tools, equipment, and expertise due to the hardness and unique properties of the material. The cutting tools used for machining special steel are often made from high-speed steel or carbide, which can withstand the high temperatures and pressures generated during the machining process. In summary, machining special steel involves a combination of cutting, grinding, and drilling techniques to shape, refine, and finish the steel workpiece in accordance with the desired specifications and requirements.
Q:What are the specific requirements for special steel used in the power transmission industry?
The specific requirements for special steel used in the power transmission industry include high strength and durability to withstand heavy loads and vibrations, excellent corrosion resistance to withstand harsh environmental conditions, good electrical conductivity for efficient power transmission, and precise dimensional accuracy to ensure proper fit and alignment in power transmission components. Additionally, special steel used in this industry needs to have excellent fatigue resistance to withstand cyclic loading and prolonged stress, as well as good thermal stability to handle high temperatures generated during power transmission.
Q:How are aluminum alloys used in the automotive industry?
Aluminum alloys are widely used in the automotive industry due to their lightweight yet durable properties. They are used in the construction of car bodies, engine components, wheels, suspension systems, and other critical parts. By using aluminum alloys, vehicles can achieve better fuel efficiency, improved performance, and reduced emissions. Additionally, these alloys offer better corrosion resistance, which enhances the lifespan and overall quality of automobiles.
Q:Can special steel be used for making oil and gas industry components?
Indeed, oil and gas industry components can be made using special steel. In the oil and gas industry, special steels like stainless steel and alloy steel are often preferred for their outstanding mechanical properties, resistance to corrosion, and ability to withstand high temperatures. These components endure harsh operating conditions, including corrosive environments, extreme temperatures, and high pressures. Special steels are specifically engineered to endure these conditions and retain their integrity and performance over time. By utilizing special steels, the oil and gas industry guarantees the dependability, longevity, and safety of vital components, including valves, pipes, fittings, and drilling equipment.
Q:Can special steel be used for structural applications?
Yes, special steel can be used for structural applications. Special steel refers to a wide range of steel alloys that are specifically designed to possess enhanced mechanical properties, such as increased strength, durability, and corrosion resistance. These qualities make special steel suitable for various structural applications, including buildings, bridges, pipelines, and heavy machinery.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords