• Carburant for grey iron casting and steel casting System 1
  • Carburant for grey iron casting and steel casting System 2
  • Carburant for grey iron casting and steel casting System 3
Carburant for grey iron casting and steel casting

Carburant for grey iron casting and steel casting

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications of Carburant:

 

- Size: 0-1mm, 0.5-1.5mm, 1-3mm, 0-5mm, 1-5mm, 3-5mm, 3-8mm 
- Application: grey iron casting and steel cas
tin
g


Carburant for grey iron casting and steel casting:


- Carburant: this product is exclusively used in grey iron casting and steel casting.

- Features: Pure chemical composition; high carbon, low sulfur and micro nitrogen, less impurity.

- Physique: Clean appearance without impurities, fast absorption rate and high absorptivity.

- Micro morphology: good crystal quality and improve the performance and specification of casting

- Stable property: stable carburetion effect, good absorption effect and Increase melt temperature distinctly without back slag.



Data Sheet:


Type

Fixed Carbon

Sulfur

Moisture

Volatile

Graininess

90%

Carb-98

98.50%

0.50-0.03%

0.50%

0.50%

Custom

Carb-93

93.00%

0.50-0.30%

0.50%

0.50%

Custom

Carb-88

88.00%

0.80-1.50%

3.50%

1.50%

Custom

Carb-92

92.00%

0.50-0.38%

0.50%

3.00%

Custom



Size and packing:


- Size:

Grade A: 0-1mm,0.5-1.5mm etc.

Grade B: 1-3mm,0-5mm,1-5mm,3-5mm,3-8mm etc.



- Applications

Due to different melting technology and equipment, grade A is applicable to iron liquid carburetion with flow before the furnace and later supplementary carbon in the furnace. grade B is applicable to carburant in the Induction Furnace .grade c is only applicable to converter steelmaking.


- The grain size can be made according to the requirement of the customers.


- packaging

25kg/bag Waterproof woven bag

25kg/bag double paper bags

50kg/bag woven bag

1000kg/bag ton bag

If you have special instruction please contact with us.


Storage:

Please keep the storage clean and dry, prevent moisture and dirty.


Quality guarantee and technical support

- Provide the quality certificate with the goods including: company name, address, product name, date of manufacture type and model, result of test.

- Ensure to offer on-site technical service and support.








Q:What are carbon credits?
The aim of carbon credits is to lessen greenhouse gas emissions and combat climate change by using a market-based mechanism. These credits measure and quantify the reduction, removal, or avoidance of one metric ton of carbon dioxide (or its equivalent) from being released into the atmosphere. The concept behind carbon credits is rooted in the belief that certain activities or projects can offset the emissions caused by other activities. For example, renewable energy projects like wind farms or solar power plants can generate carbon credits by replacing the need for fossil fuel-based electricity generation. Similarly, projects focused on reforestation or afforestation can absorb carbon dioxide from the atmosphere and generate credits. These carbon credits can be purchased and sold in the carbon market, enabling companies or individuals to compensate for their own emissions by buying credits from projects that have successfully reduced or removed carbon dioxide from the atmosphere. This supports environmentally friendly initiatives and contributes to the overall reduction of greenhouse gases. The carbon credit system functions by creating financial incentives for activities that reduce emissions. It encourages businesses to invest in cleaner technologies and practices by assigning a monetary value to the reduction of carbon emissions. This drives the transition to a low-carbon economy and promotes sustainable development. Carbon credits play a crucial role in international efforts to tackle climate change. They are often used as a compliance mechanism for countries or companies to meet their emission reduction targets, as outlined in international agreements like the Kyoto Protocol or the Paris Agreement. Additionally, they contribute to the overall objective of limiting global temperature rise by encouraging emission reductions beyond regulatory requirements. While carbon credits have faced criticism for potentially allowing companies to continue polluting by simply purchasing credits, they remain an important tool in the fight against climate change. They provide economic benefits to sustainable projects and encourage the adoption of cleaner technologies, ultimately helping to mitigate the environmental impact of human activities.
Q:Is there any difference between carbon plate and universal board?
Common grades except Q235, Q345, SS400, St12 and so on, as well as SPHC and other hot roll special brand.The chemical composition and mechanical properties of the two standards are basically the same, the difference is usually used after rolling in Kaiping, Kaiping after the plate usually exists obvious residual stress, would adversely affect the subsequent processing.
Q:Intend to go to the barbecue and 35 friends over the weekend, but because it is new, so I don't know how to put the carbon burning, found some web sites are also a few pens, see me confused......Hope which experienced friend to help enlighten me, the best to the specific point, thank you ah!
I see selling mutton string is usually used in newspapers or put a small wood charcoal stove, just like
Q:What are the uses of carbon black?
Carbon black has a wide range of uses across various industries due to its unique properties. One of the primary uses of carbon black is as a reinforcing filler in rubber materials. It improves the strength, durability, and resistance to wear and tear of rubber products, making them suitable for applications such as tires, conveyor belts, gaskets, hoses, and shoe soles. Carbon black is also used as a pigment in inks, coatings, and dyes. Its high tinting strength and ability to absorb ultraviolet light make it an excellent choice for coloring plastics, paints, and printing inks. Additionally, carbon black is used in toners for photocopiers and laser printers, providing the dark color required for high-quality printing. Furthermore, carbon black finds applications in the manufacturing of electrodes for batteries and fuel cells. Its electrical conductivity and high surface area make it an ideal material for enhancing the performance and efficiency of energy storage devices. Carbon black is also used in the production of carbon brushes, which are crucial components in electric motors and generators. In the construction industry, carbon black is utilized as a filler in concrete and asphalt to enhance their strength and durability. It improves the resistance to weathering, reduces cracking, and increases the lifespan of these materials. Additionally, carbon black is employed in the production of conductive polymers used for static dissipation and electromagnetic shielding in various construction materials. In summary, the uses of carbon black are diverse and span across multiple industries. From reinforcing rubber products to coloring inks and coatings, enhancing energy storage devices, and improving the strength of construction materials, carbon black plays a vital role in enhancing the performance and durability of various products.
Q:What are the meanings of carbon, graphite, burr, two cuts and four cuts in steel?.
Flash is to flash, or two bending. Two cuts; one cut two on average, three segments, four cuts; an average cut of four, and five segments. The back is industry talk.
Q:Well, recently, the carbon cycle has suddenly come up with a lot of questions. What's the definition of carbon and light carbon? What are the characteristics, and what are the differences between the two?
Light and heavy soil organic matter is divided according to the proportion of the isolates used in this study. The proportion of 1.7 is the proportion of < 1.7 for light fraction organic matter, the proportion of > 1.7 recombinant organic matter. The composition and decomposition of organic carbon in different components are significantly different. Light fraction organic matter by no solution complete plant residues and its fractions include a small amount of live microorganisms or their secretions, is susceptible to microbial decomposition and utilization characteristics, is very sensitive to climatic and environmental changes and agricultural management measures, is the active carbon pool in soil.
Q:What is the role of carbon in the corrosion of metals?
The role of carbon in the corrosion of metals is primarily as a catalyst or facilitator for corrosion processes. Carbon, in the form of carbon dioxide (CO2) or carbonic acid (H2CO3), can react with moisture in the atmosphere to form carbonic acid, which is a weak acid. This weak acid can then react with metal surfaces, initiating the corrosion process. When carbonic acid comes into contact with a metal, it can cause a chemical reaction known as carbonic acid corrosion or acid attack. This reaction involves the dissolution of metal ions into solution and the formation of metal oxide or metal hydroxide products. The presence of carbon in the form of carbon dioxide or carbonic acid can accelerate the corrosion rate by providing an electrolyte and lowering the pH of the environment, making it more corrosive. Furthermore, carbon can also participate in galvanic corrosion, which occurs when two dissimilar metals are in contact with an electrolyte. Carbon, in the form of graphite, can act as a conductor, allowing the flow of electrons between the two metals. This can create an electrochemical cell, leading to accelerated corrosion of the less noble metal. In addition to these direct roles, carbon can indirectly contribute to metal corrosion through the formation of corrosion products such as carbonates or bicarbonates. These compounds can accumulate on the metal surface, leading to the formation of a protective or non-protective corrosion layer. Depending on the specific conditions, this layer can either hinder or enhance the corrosion process. Overall, carbon plays a significant role in the corrosion of metals by acting as a catalyst, facilitating the formation of corrosive environments, participating in galvanic corrosion, and influencing the formation of corrosion products. Understanding the role of carbon is crucial in developing effective corrosion prevention and mitigation strategies.
Q:when to use hard carbon, and when to use soft carbon. Neutral charcoal can play what role? Thank you.
Hard charcoal first used to draft the draft, then is depicted. On the tone of most people love compared with neutral charcoal, personal love. At the end of the characterization, soft and hard together. That's probably it.
Q:How is carbon used in the water treatment process?
The water treatment process employs carbon in various ways. Activated carbon, which possesses a high porosity and a large surface area, is commonly utilized. This enables it to efficiently adsorb and eliminate impurities from water. Water treatment facilities often employ activated carbon in the form of granules, pellets, or blocks. It can be introduced at different stages of the treatment process. For instance, during the initial filtration stage, activated carbon can be utilized to eliminate particles that can affect the water's taste and smell, such as sediment and chlorine byproducts. Moreover, activated carbon is highly effective in eliminating organic compounds, including pesticides, herbicides, and industrial chemicals, that may exist in the water. The consumption of these compounds can be detrimental to human health, thus the use of activated carbon ensures the safety of drinking water. Another method in which carbon is employed in water treatment is through carbonation. This procedure involves injecting carbon dioxide gas into the water, which aids in reducing its pH level. Carbonation is commonly employed in the treatment of alkaline water sources, as it neutralizes the water and makes it more suitable for consumption. In conclusion, carbon plays a vital role in the water treatment process as it efficiently removes impurities and enhances the quality of drinking water. Its ability to adsorb makes it an invaluable tool in guaranteeing the safety and healthiness of water.
Q:What are the impacts of carbon emissions on the stability of savannas?
The impacts of carbon emissions on the stability of savannas are significant. Increased carbon emissions contribute to the greenhouse effect, leading to global warming and climate change. These changes in climate can directly affect the natural balance and stability of savannas. One of the main impacts is an alteration in rainfall patterns. Climate change can disrupt the regular rainfall cycles in savannas, leading to extended periods of drought or intense rainfall events. This can disrupt the ecosystem's natural fire regime, which is crucial for maintaining the savanna's biodiversity and preventing the encroachment of woody vegetation. Additionally, elevated carbon dioxide levels can promote the growth of certain plant species, particularly those that are more efficient at utilizing carbon dioxide. This can lead to changes in the composition and structure of savanna vegetation, favoring the growth of more dominant and invasive species. Such changes can potentially reduce the diversity and resilience of the savanna ecosystem. Furthermore, increased carbon emissions contribute to the acidification of rainwater and soils. This can negatively impact the nutrient availability and composition of savanna soils, affecting the productivity and health of the entire ecosystem. Overall, carbon emissions pose a significant threat to the stability and functioning of savannas, impacting their biodiversity, fire regime, rainfall patterns, and soil health. It is crucial to address and reduce carbon emissions to mitigate these impacts and ensure the long-term conservation of savanna ecosystems.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords