• CARBON STEEL PIPE FITTINGS ASTM A234 TEE 6'' System 1
CARBON STEEL PIPE FITTINGS ASTM A234 TEE 6''

CARBON STEEL PIPE FITTINGS ASTM A234 TEE 6''

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1 m.t.
Supply Capability:
30000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Specifications

1.we produce seamless steel pipe 
2.size:48-219*4.5-45mm 
3.ISO 9000 approved 
4.Market:south/east Asia,Mid-east,South America

seamless steel pipe

Material J55 K55 N80 L80 P110.etc

Standard ASTM  JIS

Usage conveying oil gas ,oil pipe line,pipe material collar,oil nature gas,

Packing wooden cases or wooden pallet ,export standard package

Others:Special design available according to requirement

Anti-corrosion available and high temperature resistence

Delivery time 30days

Payment term T/T  L/C

Name

API oil casing pipe

Out Diameter

Wall thickness

Material

Thread

Length

in

mm

5 1/2

139.7mm

6.20

J55/K55/N80

LTC/STC/BTC

R2

6.98

7.72

9.17

10.54

6 5/8

168.28mm

7.32

J55/K55/N80

LTC/STC/BTC

R2

8.94

10.59

12.06

12.06

8 5/8

219.08

8.94

H40

S/L/B

9  5/8R2

J55/K55

S/L/B

10.6

L80

L/B

12.7

L80  C95

L/B

14.15

P110

L/B

9 5/8

244.48

13.84

J55  K55

R2

15.11

L80

L/B

10 3/4

273.05

11.43

J55  K55

S/B/E

R2

13.84

P110

S/B

15.11

P110

S/B

11 3/4

298.45

12.19

J55  K55

S/B

R2

10.96

J55  K55

S/B

13 3/8

339.72

12.19

J55 K55 L80

S/B

R2

10.92

J55  K55

S/B

13.06

L80

S/B

  Coupling and thread can be required according to customer requirment

 

 

Q: How do you calculate the pipe flow velocity coefficient for steel pipes?
The pipe flow velocity coefficient for steel pipes can be calculated using the Manning's equation. Manning's equation is used to calculate the flow velocity in open channels and pipes, and it takes into account the hydraulic radius, slope, and roughness coefficient of the pipe. To calculate the pipe flow velocity coefficient for steel pipes, follow these steps: 1. Determine the hydraulic radius (R) of the steel pipe. The hydraulic radius is calculated by dividing the cross-sectional area of the pipe (A) by the wetted perimeter (P). The formula is R = A/P. 2. Find the slope (S) of the pipe. The slope represents the change in elevation divided by the length of the pipe. It is usually given as a ratio or a percentage. 3. Determine the roughness coefficient (n) of the steel pipe. The roughness coefficient represents the internal roughness of the pipe and can be obtained from literature or pipe manufacturer specifications. It is commonly given in terms of the Manning's roughness coefficient. 4. Substitute the values of hydraulic radius (R), slope (S), and roughness coefficient (n) into the Manning's equation: V = (1/n) * R^(2/3) * S^(1/2) where V is the flow velocity. 5. Solve the equation for V to calculate the pipe flow velocity coefficient for steel pipes. It is important to note that the calculated velocity coefficient may vary based on the specific pipe dimensions, flow conditions, and other factors. Therefore, it is recommended to consult relevant engineering standards or consult with a hydraulic engineer to ensure accurate and reliable calculations for specific applications.
Q: How are steel pipes insulated to prevent heat gain?
Steel pipes are typically insulated using materials such as fiberglass, foam, or mineral wool. These insulation materials are wrapped around the steel pipes to create a barrier that reduces heat transfer. The insulation helps to prevent heat gain by minimizing thermal conductivity and keeping the temperature of the pipes stable, which is crucial for maintaining the integrity and efficiency of various industrial processes.
Q: How are steel pipes used in data centers?
Steel pipes are used in data centers for the installation of cooling systems, electrical wiring, and network cabling, providing a robust and reliable infrastructure to support the data center's operations.
Q: What is the difference between hot-dip galvanizing and electroplating for steel pipes?
Hot-dip galvanizing and electroplating are both methods used to protect steel pipes from corrosion, but they differ in the process and the properties of the resulting coating. Hot-dip galvanizing involves immersing the steel pipe in a bath of molten zinc, which forms a thick and durable coating that bonds metallurgically with the steel. This provides excellent corrosion resistance and protection even in harsh environments. On the other hand, electroplating involves the deposition of a thin layer of zinc onto the steel pipe using an electric current. While electroplating also offers corrosion protection, the coating is typically thinner and less durable than hot-dip galvanizing. Hot-dip galvanizing is typically preferred for steel pipes that require long-lasting protection, while electroplating may be suitable for applications where a thinner coating is sufficient.
Q: What are the advantages of using steel pipes in the manufacturing of appliances?
There are several advantages of using steel pipes in the manufacturing of appliances. Firstly, steel pipes offer high strength and durability, making them ideal for handling heavy loads and withstanding harsh conditions. Secondly, steel pipes have excellent corrosion resistance, ensuring longevity and preventing damage from exposure to moisture or chemicals. Furthermore, steel pipes provide a smooth interior surface, promoting efficient flow of liquids or gases within the appliances. Lastly, steel pipes are recyclable, making them a sustainable choice and contributing to environmental conservation.
Q: What is the difference between steel pipes and cast iron pipes?
The main difference between steel pipes and cast iron pipes lies in their composition and durability. Steel pipes are made from an alloy of iron and carbon, which results in a strong and durable material. They are highly resistant to corrosion and can withstand high pressure and temperature. On the other hand, cast iron pipes are made from molten iron and have a higher carbon content. While they are also durable and have good pressure-bearing capabilities, they are more prone to rust and corrosion over time. Additionally, cast iron pipes are typically heavier and more brittle compared to steel pipes.
Q: What are the different standards for steel pipe manufacturing?
There are several different standards for steel pipe manufacturing, including ASTM (American Society for Testing and Materials), ASME (American Society of Mechanical Engineers), API (American Petroleum Institute), and DIN (Deutsches Institut für Normung). These standards provide specifications for various aspects of steel pipe production, such as dimensions, chemical composition, mechanical properties, and testing procedures. Compliance with these standards ensures the quality and reliability of steel pipes for different applications and industries.
Q: What are the common sizes of steel pipe fittings?
The common sizes of steel pipe fittings range from 1/8 inch to 24 inches in diameter.
Q: What are low-pressure carbon steel tubes?
Pipe fittingsA pipe fitting is a piece of pipe that is connected to a pipe. According to the connection method can be divided into socket type pipe fittings, threaded fittings, flange fittings and welding pipe four categories. Multipurpose; made of the same material as pipes. Elbow (elbow), flange, three pipe and four pipe (crosshead) and reducer (reducer) etc.. Elbow for pipeline corner; flange for the pipe and pipe interconnected parts, connected to the pipe end, three pipe for three pipe collection; four pipe for four tubes together place; for two pipes of different diameters connected to different diameter pipe.
Q: How are steel pipes used in the manufacturing of solar power systems?
Steel pipes are commonly used in the manufacturing of solar power systems for various purposes. They are used to support and secure solar panels, providing a sturdy framework for installation. Steel pipes are also used for the transportation of fluids, such as water or heat transfer fluids, within the solar power system. Additionally, steel pipes are utilized in the construction of solar power plant infrastructure, including the installation of mounting structures and foundations. Overall, steel pipes play a crucial role in the manufacturing and functioning of solar power systems.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords