• Hot Rolled Steel Equal Steel Angle Q235 Q235 SS400 System 1
  • Hot Rolled Steel Equal Steel Angle Q235 Q235 SS400 System 2
  • Hot Rolled Steel Equal Steel Angle Q235 Q235 SS400 System 3
Hot Rolled Steel Equal Steel Angle Q235 Q235 SS400

Hot Rolled Steel Equal Steel Angle Q235 Q235 SS400

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
27 m.t.
Supply Capability:
35000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Hot Rolled Steel Equal Steel Angle Q235 Q235 SS400 at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Steel Equal Steel Angle Q235 Q235 SS400 are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Hot Rolled Steel Equal Steel Angle Q235 Q235 SS400 are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Specifications of Angle Steel

1. Invoicing on theoretical weight or actual weight as customer request.

2. Length: 6m, 9m, 12m.

3. Sizes:

Size(mm)

Mass(Kg/m)

Size(mm)

Mass(Kg/m)

50*50*4

3.059

63*63*5

4.822

50*50*5

3.77

63*63*6

5.721

50*50*6

4.465



 

Alloy No

Grade

Element (%)

C

Mn

S

P

Si

 

 

 

 

 

 

 

Q235

B

0.12—0.20

0.3—0.7

≤0.045

≤0.045

≤0.3

 

 

 

 

 

 

 

Alloy No

Grade

Yielding strength point( Mpa)

Thickness (mm)

≤16

>16--40

>40--60

>60--100

 

 

 

 

 

 

Q235

B

235

225

215

205

Alloy No

Grade

Tensile strength (Mpa)

Elongation after fracture (%)

Thickness (mm)

 

≤16

>16--40

>40--60

>60--100

 

 

 

 

 

 

 

Q235

B

375--500

26

25

24

23

 

Packaging & Delivery of Hot Rolled Steel Equal Steel Angle Q235 Q235 SS400

1. Packing: it is nude packed in bundles by steel wire rod

2. Bundle weight: not more than 3.5MT for bulk vessel; less than 3 MT for container load

3. Marks:

Color marking: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.

Tag mark: there will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.

If loading by container the marking is not needed, but we will prepare it as customer request.

4. Transportation: the goods are delivered by truck from mill to loading port, the maximum quantity can be loaded is around 40MTs by each truck. If the order quantity cannot reach the full truck loaded, the transportation cost per ton will be little higher than full load.

5. Delivered by container or bulk vessel

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q5: Can stainless steel rust?

A5: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.

 

Images:

Q:Galvanized steel angles under what conditions?
Iron tower and other exposed steel structures are often used
Q:Are steel angles suitable for conveyor systems?
Indeed, conveyor systems can indeed employ steel angles. The reason for the frequent use of steel angles in conveyor systems lies in their strength, durability, and versatility. Steel angles offer a robust framework capable of bearing hefty loads and enduring the perpetual motion and vibrations inherent in a conveyor system. Assembling the conveyor system's structure becomes a breeze as steel angles can be effortlessly welded or bolted together, granting effortless customization and adaptation. Furthermore, steel angles boast corrosion resistance, rendering them fitting for diverse environments and applications.
Q:What are the different grades of steel used in manufacturing steel angles?
There are several different grades of steel that are commonly used in manufacturing steel angles. These grades vary in terms of their composition, strength, and other properties, and are selected based on the specific requirements of the application. One commonly used grade is mild steel, also known as low carbon steel or A36 steel. This grade is widely available and commonly used due to its affordability and ease of machining. Mild steel angles are often used in general construction and fabrication projects. Another grade is high-strength low-alloy steel (HSLA), which contains small amounts of alloying elements such as copper, phosphorus, niobium, or vanadium. HSLA steels offer higher strength and improved corrosion resistance compared to mild steel, making them suitable for structural applications in heavy machinery or marine environments. There are also higher-strength steels, such as high-strength steel angles (HSS) or ultra-high-strength steel angles (UHSS). These grades are specifically designed to provide exceptional strength and durability, often used in demanding applications such as bridges, high-rise buildings, or automotive components. Stainless steel is another common grade used in manufacturing steel angles. With its excellent corrosion resistance, stainless steel angles are commonly used in food processing, chemical, or marine applications where resistance to rust and staining is crucial. The specific grade of steel used in manufacturing steel angles depends on factors such as load-bearing requirements, corrosion resistance, and cost considerations. Consulting with a structural engineer or steel supplier can help determine the most suitable grade for a particular application.
Q:How do you calculate the moment of inertia of a steel angle?
To calculate the moment of inertia of a steel angle, you can use the basic formula for moment of inertia, which is I = (1/12) * b * h^3, where I represents the moment of inertia, b is the base width of the angle, and h is the height of the angle.
Q:How are steel angles cut to specific lengths?
Steel angles are cut to specific lengths using various cutting tools and techniques. One common method is using a saw, such as a band saw or a circular saw with a metal-cutting blade. The angle is securely clamped or held in place, and the saw blade is guided along the desired cutting line to make a clean and precise cut. Another method is using an abrasive cutting wheel, also known as a cutoff wheel or a grinding disc. This technique is often used for thinner steel angles or when a more precise cut is required. The angle is secured in a vise or a similar holding device, and the cutting wheel is carefully guided along the marked cutting line to remove the excess material. For larger and thicker steel angles, a plasma cutter or an oxy-fuel torch may be used. Both methods involve heating the steel to a high temperature, causing it to melt or oxidize, allowing for a clean and accurate cut. Plasma cutters use a focused jet of ionized gas, while oxy-fuel torches rely on a combination of oxygen and a fuel gas, such as acetylene or propane. In some cases, steel angles can also be cut using more specialized techniques, such as water jet cutting or laser cutting. Water jet cutting involves using a high-pressure stream of water mixed with abrasive particles to erode the steel, while laser cutting utilizes a concentrated laser beam to melt or vaporize the material along the desired cutting path. Regardless of the method used, the key is to ensure the angle is securely held in place and the cutting tool is guided accurately along the marked cutting line. Proper safety precautions, such as wearing protective eyewear and gloves, should always be taken when cutting steel angles to specific lengths.
Q:What are the common methods of joining or connecting steel angles together?
Common methods of joining or connecting steel angles together include welding, bolting, and using angle brackets or cleats.
Q:How do you prevent galvanic corrosion between steel angles and aluminum components?
One effective way to prevent galvanic corrosion between steel angles and aluminum components is by using a barrier such as a non-conductive coating or a primer. Applying a layer of paint or epoxy on the steel angles can create a protective barrier between the two metals, preventing direct contact and reducing the likelihood of corrosion. Additionally, using isolation materials like rubber or plastic gaskets between the steel and aluminum can also help minimize galvanic corrosion. Regular inspection and maintenance, including ensuring proper drainage and reducing moisture exposure, can further contribute to preventing galvanic corrosion in this scenario.
Q:What are the load-bearing capacities of different sizes and types of steel angles?
The load-bearing capacities of different sizes and types of steel angles vary depending on factors such as the material grade, dimensions, and specific design requirements. It is essential to consult engineering tables or design codes, as they provide detailed information on load-bearing capacities for different steel angles.
Q:How do you determine the required size of a steel angle for a specific application?
To determine the required size of a steel angle for a specific application, several factors need to be considered. These include the load or weight it needs to support, the angle's length and orientation, the type of steel being used, and any design codes or regulations that must be followed. Structural engineers typically perform calculations and analysis using equations and standards to determine the appropriate size of the steel angle to ensure it can handle the required load safely and efficiently.
Q:What is a steel angle?
A steel angle is a type of structural steel shape that has two legs of equal length, forming a 90-degree angle. It is commonly used in construction and various industries for providing structural support and reinforcement.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords