• 250 Watt Photovoltaic Poly Solar Panel supplier System 1
  • 250 Watt Photovoltaic Poly Solar Panel supplier System 2
250 Watt Photovoltaic Poly Solar Panel supplier

250 Watt Photovoltaic Poly Solar Panel supplier

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
1000 watt
Supply Capability:
500000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Material:
Polycrystalline Silicon
Max. Power(W):
250
Number of Cells(pieces):
60

Instruction

Quality and Safety

1. Rigorous quality control meets the highest international standards.

2. High-transmissivity low-iron tempered glass, strong aluminium frame.

3. Using UV-resistant silicon.

4. IS09001/14001/CE/TUV/UL  

5.3w-300w mono & poly solar panel supply

Warranties

1. 10 years limited product warranty

2. 15 years at 90% of the minimal rated power output

3. 25 years at 80% of the minimal rated power output

   

Feature

1. High efficiency and High power.

2. Long-term electrical stability.

3. Lowest price and Fastest delivery.

4. Good quality and good service.

5.Bulk supply

6. Good Warranty

7.Big Sale

8.High quality

9.More than 35 years on the lifetime.

10 DHL/Fedex/UPS/TNT/EMS etc

 

Images

 

250 Watt Photovoltaic Poly Solar Panel supplier

250 Watt Photovoltaic Poly Solar Panel supplier

Specification

 

Model

SIM-100

Maximum Power at ST(Pmax)W

100Wp

Maximum Power Voltage(Vmp)V

18.0V

Maximum Power Current(Imp)A

5.56A

Open Circuit Voltage(Voc)V

22.0V

Short Circuit Current(Isc)A

5.9A

Cell Efficiency(%)

17.0%

Module Efficiency(%)

15.37%

Operating Temperature°C

-40°C to    85°C

Maximum system voltage

1000V(IEC)DC

Power tolerance

-0.03

Temperature coefficients of Pmax

-0.45%/°C

Temperature coefficients of Voc

-0.27%/°C

Temperature coefficients of Isc

0.05%/°C

Weight(kg)

7.4

Number of cell(pcs)

4*9

 

FAQ

We have organized several common questions for our clients,may help you sincerely:

1). What’s price per watt?

A: It’s depends on the quantity, delivery date and payment terms of the order. We can talk further about the detail price issue. Our products is high quality with lower price level.

2). Can you tell me the parameter of your solar panels?

We have different series of cells with different power output, both from c-si to a-si. Please take our specification sheet for your reference.

3). How do you pack your products?

We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

4). How long can we receive the product after purchase?

In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. The perfect time of receiving is related to the state and position of customers. Commonly 7 to 10 working days can be served.


How do solar cells work?

A solar cell is a sandwich of n-type silicon (blue) and p-type silicon (red). It generates electricity by using sunlight to make electrons hop across the junction between the different flavors of silicon:

  1. When sunlight shines on the cell, photons (light particles) bombard the upper surface.

  2. The photons (yellow blobs) carry their energy down through the cell.

  3. The photons give up their energy to electrons (green blobs) in the lower, p-type layer.

  4. The electrons use this energy to jump across the barrier into the upper, n-type layer and escape out into the circuit.

  5. Flowing around the circuit, the electrons make the lamp light up.

 Principles of  the  working about solar  cells

 Solar cells convert the sun’s energy into electricity. Whether they’re adorning your calculator or orbiting our planet on satellites, they rely on the the photoelectric effect: the ability of matter to emit electrons when a light is shone on it.

Silicon is what is known as a semi-conductor, meaning that it shares some of the properties of metals and some of those of an electrical insulator, making it a key ingredient in solar cells. Let’s take a closer look at what happens when the sun shines onto a solar cell.

Sunlight is composed of miniscule particles called 
photons, which radiate from the sun. As these hit the silicon atoms of the solar cell, they transfer their energy to loose electrons, knocking them clean off the atoms. The photons could be compared to the white ball in a game of pool, which passes on its energy to the coloured balls it strikes.

Freeing up electrons is however only half the work of a solar cell: it then needs to herd these stray electrons into an electric current. This involves creating an electrical imbalance within the cell, which acts a bit like a slope down which the electrons will flow in the same direction.

Creating this imbalance is made possible by the internal organisation of silicon. Silicon atoms are arranged together in a tightly bound structure. By squeezing small quantities of other elements into this structure, two different types of silicon are created: n-type, which has spare electrons, and p-type, which is missing electrons, leaving ‘holes’ in their place. 

When these two materials are placed side by side inside a solar cell, the n-type silicon’s spare electrons jump over to fill the gaps in the p-type silicon. This means that the n-type silicon becomes positively charged, and the p-type silicon is negatively charged, creating an electric field across the cell. Because silicon is a semi-conductor, it can act like an insulator, maintaining this imbalance.

As the photons smash the electrons off the silicon atoms, this field drives them along in an orderly manner, providing the electric current to power calculators, satellites and everything in between.

Q:Can solar cells be used for off-grid living?
Yes, solar cells can be used for off-grid living. Solar panels can generate electricity from sunlight, which can then be used to power various appliances and devices in a home or building. This eliminates the need for being connected to the traditional power grid, making it a sustainable and independent energy solution for off-grid living.
Q:How to manufacture solar cells?
First of all, the silicon needs to be purified.
Q:How do solar cells perform in dry desert conditions?
Solar cells perform exceptionally well in dry desert conditions. The intense sunlight and lack of humidity in desert environments create optimal conditions for the generation of solar energy. The absence of clouds and minimal air pollution allows solar cells to efficiently convert sunlight into electricity, resulting in higher energy output. Additionally, the heat in desert regions can increase the efficiency of solar cells, as their performance typically improves with higher temperatures. Therefore, solar cells are highly effective and efficient in dry desert conditions.
Q:Is it possible to learn how to make solar cells by yourself?
I did that when I was 15 years old, and I succeeded!
Q:Can solar cells be used for powering communication systems?
Yes, solar cells can be used for powering communication systems. Solar cells convert sunlight into electricity, which can be used to power various devices, including communication systems. This makes them a sustainable and environmentally-friendly option for powering such systems in remote or off-grid locations.
Q:Can solar cells be used on windows?
Yes, solar cells can be used on windows. Photovoltaic (PV) technology allows solar cells to be integrated into windows, transforming them into transparent solar panels. These solar windows can generate electricity from sunlight while still maintaining the functionality of a regular window. They are being increasingly used in buildings to harness solar energy and contribute to sustainable energy solutions.
Q:How do solar cells impact energy independence?
Solar cells impact energy independence by harnessing the power of the sun to generate electricity, reducing reliance on traditional fossil fuels. By providing a clean and renewable source of energy, solar cells contribute to reducing greenhouse gas emissions and increasing energy self-sufficiency, ultimately enhancing a country's energy independence.
Q:What is Solar Cell Technology?
A newly-developed technology which can help us get a lot energy from the sunlight.
Q:Can solar cells be used in healthcare facilities?
Yes, solar cells can be used in healthcare facilities. They can be employed to generate electricity, which can power medical equipment, lighting, and other essential systems in healthcare facilities. Solar energy can help reduce reliance on the conventional power grid, providing a sustainable and cost-effective source of electricity for healthcare facilities, especially in remote or off-grid areas. Additionally, solar cells can contribute to reducing carbon emissions and promoting environmental sustainability in the healthcare sector.
Q:What information can I get from the Internet about the solar cell modules? Such as what it is? How it is made?
Here is what I can found online about the solar cell module for your information: A bulk silicon PV module consists of multiple individual solar cells connected, nearly always in series, to increase the power and voltage above that from a single solar cell. The voltage of a PV module is usually chosen to be compatible with a 12V battery. An individual silicon solar cell has a voltage of just under 0.6V under 25 °C and AM1.5 illumination.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords