• Three Phase AC DC Hybrid Solar Inverter 5KVA-12KVA/8-19.2KW System 1
  • Three Phase AC DC Hybrid Solar Inverter 5KVA-12KVA/8-19.2KW System 2
  • Three Phase AC DC Hybrid Solar Inverter 5KVA-12KVA/8-19.2KW System 3
  • Three Phase AC DC Hybrid Solar Inverter 5KVA-12KVA/8-19.2KW System 4
Three Phase AC DC Hybrid Solar Inverter 5KVA-12KVA/8-19.2KW

Three Phase AC DC Hybrid Solar Inverter 5KVA-12KVA/8-19.2KW

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
1000 unit
Supply Capability:
10000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
5.5-13.2
Inveter Efficiency:
98.2
Output Voltage(V):
230V / 400V AC
Input Voltage(V):
160V~800V DC
Output Current(A):
21.7A~52A
Output Frequency:
50Hz / 60Hz

Key Parameters

Output Type:Triple, Pure Sine Wave

Type:DC/AC Inverters

Inverter Efficiency:98.2%

 

Other attributes

Model Number:XD5KTR, XD6KTR, XD8KTR, XD10KTR, XD12KTR

Input Voltage:160V~800V DC

Output Voltage:230V / 400V AC

Output Current:21.7A~52A

Output Frequency:50Hz / 60Hz

Size:534W*440H*220D mm

Certificate:CE/IEC/ISO/TUV

Warranty:5 years

Weight:30kg

Product Name:DC AC Hybrid Solar Inverter(With Storage)

Battery Type:Lithium/Lead-acid

Rated Power:5000~12000W

Waveform:Pure Sine Wave

Power Factor:0.8 leading~0.8 lagging

Max. PV Input Power:8~19.2kW

Max. PV Input Voltage:1100V

Max. PV Input Current:20A

Communication:RS485 / CAN / WIFI / 4G / LAN / Bluetooth

Packaging and delivery

Package Type:Standard Export Package

Supply Ability:10000 Piece/Pieces per Month

 

Lead time

Quantity (pieces)1 - 100   101 - 500   501 - 1000       > 1000

Lead time (days)    7               14              21        To be negotiated

Customized packaging

Q: How does a solar inverter handle variations in grid frequency?
A solar inverter handles variations in grid frequency by constantly monitoring the frequency of the grid and adjusting its own output accordingly. It does this through a process called frequency synchronization, where it synchronizes its output frequency with the grid frequency. This allows the solar inverter to seamlessly adapt to any changes in grid frequency, ensuring a stable and reliable power supply to the connected solar panels or the grid.
Q: How does a solar inverter convert DC to AC?
A solar inverter converts direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power appliances and feed into the electrical grid. It does this by using a complex electronic circuit that first converts the DC power into high-frequency AC power. This high-frequency AC power is then transformed into the desired voltage and frequency of standard AC power using pulse-width modulation techniques. The converted AC power can then be utilized for various household or commercial electrical needs.
Q: How long does a solar inverter last?
A solar inverter typically has a lifespan of around 10 to 15 years, although this can vary depending on various factors such as the quality of the inverter, its usage, and maintenance.
Q: How does a solar inverter handle variations in solar panel degradation over time?
A solar inverter handles variations in solar panel degradation over time by continuously monitoring the power output of the solar panels and adjusting its operations accordingly. As solar panels degrade over time, their efficiency decreases, resulting in a decrease in power output. The inverter detects this decrease and adapts its operation to maximize the power conversion and maintain optimal performance. This ensures that the solar energy harvested from the panels is efficiently converted and utilized, despite variations in panel degradation.
Q: What is the role of a power monitoring feature in a solar inverter?
The role of a power monitoring feature in a solar inverter is to constantly monitor and measure the amount of power being generated by the solar panels. This feature allows users to track the performance of their solar system, detect any issues or malfunctions, and optimize the energy output for maximum efficiency. It provides real-time data on the power production, enabling users to make informed decisions regarding energy usage and grid integration.
Q: The working principle of photovoltaic grid - connected inverter
Inverter will be converted into alternating current DC, if the DC voltage is low, then through the AC transformer boost, that is, the standard AC voltage and frequency. For large-capacity inverter, because the DC bus voltage is high, AC output generally does not require transformer boost that can reach 220V, in the small and medium capacity of the inverter, because the DC voltage is low, such as 12V, 24V, It is necessary to design a boost circuit.
Q: Can a solar inverter be used in locations with high humidity or extreme temperatures?
Yes, solar inverters can be used in locations with high humidity or extreme temperatures. However, it is important to choose an inverter specifically designed for such conditions. High-quality inverters are built to withstand these environmental factors and often have protection features to ensure reliable performance and longevity in harsh climates.
Q: What is the role of a voltage control unit in a solar inverter?
The role of a voltage control unit in a solar inverter is to regulate and stabilize the voltage output from the solar panels, ensuring that it matches the required voltage for the connected electrical devices or grid connection. This unit helps to maximize the efficiency of the solar inverter and prevent any potential damage to the electrical system by maintaining a consistent and optimal voltage level.
Q: Can a solar inverter be used in systems with different module types?
Yes, a solar inverter can be used in systems with different module types. Solar inverters are designed to convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power various household appliances and be fed into the electrical grid. They are typically compatible with a wide range of module types, including monocrystalline, polycrystalline, and thin-film solar panels. However, it is important to ensure that the inverter's specifications and capacity align with the specific module types being used to ensure optimal performance and efficiency.
Q: Can a solar inverter be used in areas with limited roof space or installation options?
Yes, a solar inverter can be used in areas with limited roof space or installation options. Solar inverters are flexible and can be installed in various locations such as walls, ground mounts, or even on poles, allowing for more flexibility in terms of space and installation options. Additionally, there are also compact and space-saving solar inverters available that can be used in areas with limited roof space.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords