• 3500 Watt Solar Inverter - Sun-10/12/15k-G03-LV | 10-15kW | Three Phase | 2 MPPT | Low Voltage | 127/220VAC System 1
  • 3500 Watt Solar Inverter - Sun-10/12/15k-G03-LV | 10-15kW | Three Phase | 2 MPPT | Low Voltage | 127/220VAC System 2
  • 3500 Watt Solar Inverter - Sun-10/12/15k-G03-LV | 10-15kW | Three Phase | 2 MPPT | Low Voltage | 127/220VAC System 3
  • 3500 Watt Solar Inverter - Sun-10/12/15k-G03-LV | 10-15kW | Three Phase | 2 MPPT | Low Voltage | 127/220VAC System 4
3500 Watt Solar Inverter - Sun-10/12/15k-G03-LV | 10-15kW | Three Phase | 2 MPPT | Low Voltage | 127/220VAC

3500 Watt Solar Inverter - Sun-10/12/15k-G03-LV | 10-15kW | Three Phase | 2 MPPT | Low Voltage | 127/220VAC

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
5000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
10-15kw
Inveter Efficiency:
98%
Output Voltage(V):
220
Input Voltage(V):
550
Output Current(A):
26.2-39.4
Output Frequency:
50/60Hz
Technical Data
Model                                                                                        SUN-10K-G03-LV                                               SUN-12K-G02-LV                                                  SUN-15K-G02-LV
Input Side
Max. DC Input Power (kW)1315.619.5
Max. DC Input Voltage (V)800
Start-up DC Input Voltage (V)250
MPPT    Operating Range (V)200~700
Max. DC Input Current (A)32+32
Max. Short Circuit Current (A)48+48
Number of MPPT / Strings per MPPT2/2
Output Side
Rated Output Power (kW)101215
Max. Active Power (kW)1113.216.5
Nominal Output Voltage / Range (V)3L/N/PE 127/0.85Un-1.1Un220 /0.85Un-1.1Un (this may vary with grid standards)
Rated Grid Frequency (Hz)60 / 50 (Optional)
Operating PhaseThree phase
Rated AC Grid Output Current (A)26.231.539.4
Max. AC Output Current (A)28.934.643.3
Output Power Factor0.8 leading to 0.8 lagging
Grid Current THD<3%
DC Injection Current (mA)<0.5%
Grid Frequency Range57~62
Efficiency
Max. Efficiency98.6%
Euro Efficiency98%
MPPT Efficiency>99%
Protection
DC Reverse-Polarity ProtectionYes
AC Short Circuit ProtectionYes
AC Output Overcurrent ProtectionYes
Output Overvoltage ProtectionYes
Insulation Resistance ProtectionYes
Ground Fault MonitoringYes
Anti-islanding ProtectionYes
Temperature ProtectionYes
Integrated DC SwitchYes
Remote software uploadYes
Remote change of operating parametersYes
Surge protectionDC Type II / AC Type II
General Data
Size (mm)330W×508H×206D
Weight (kg)20.8
TopologyTransformerless
Internal Consumption<1W (Night)
Running Temperature-25~65,   >45 derating
Ingress ProtectionIP65
Noise Emission (Typical)<45 dB
Cooling ConceptSmart cooling
Max. Operating Altitude Without Derating2000m
Warranty5 years
Grid Connection StandardCEI 0-21, VDE-AR-N 4105, NRS 097, IEC 62116, IEC 61727, G99,   G98, VDE 0126-1-1, RD 1699, C10-11
Operating Surroundings Humidity0-100%
Safety EMC / StandardIEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
Features
DC Connection
    AC Connection Display
    Interface
MC-4 mateable
   
AC ConnectionIP65 rated plug 
DisplayLCD1602 
InterfaceRS485/RS232/Wifi/LAN
  • 27/220Vac and      60Hz, three phase system

  • 2 MPP      tracker, Max. efficiency up to 98.6%

  • Zero      export application, VSG application

  • String      intelligent monitoring (optional)

  • Wide      output voltage range

  • Anti-PID      function (Optional)

This series inverter is specially designed for 127/220Vac three-phase system, especially suits for South American areas. With compactness design, easy to install and operate. It supports wide AC output voltage to adapt to poor grid, extending the inverter working hours.


Q: What are the indicators of a faulty solar inverter?
Some indicators of a faulty solar inverter include, but are not limited to, a sudden drop in power output, unusual noises or vibrations coming from the inverter, error messages or warning lights displayed on the inverter's screen, frequent shutdowns or restarts, and a lack of communication or connection with the solar monitoring system.
Q: How does a solar inverter protect against power surges?
A solar inverter protects against power surges by using built-in surge protection devices such as metal oxide varistors (MOVs) or transient voltage suppressors (TVS). These devices act as a barrier, diverting excess voltage from entering the inverter and the connected solar panels. This prevents damage to the inverter and other sensitive electronic components by ensuring that the voltage stays within safe limits.
Q: How do you calculate the power output of a solar inverter?
The power output of a solar inverter can be calculated by multiplying the DC voltage input from the solar panels by the DC current output. This will give you the DC power output. To calculate the AC power output, you need to consider the efficiency of the inverter. Multiply the DC power output by the inverter efficiency to determine the AC power output.
Q: What is the purpose of a solar inverter?
The purpose of a solar inverter is to convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power household appliances and be fed back into the electrical grid.
Q: Can a solar inverter be used with solar-powered agricultural equipment?
Yes, a solar inverter can be used with solar-powered agricultural equipment. A solar inverter is an essential component in a solar power system as it converts the DC (direct current) electricity generated by solar panels into AC (alternating current) electricity that can be used to power various equipment, including agricultural machinery.
Q: Can a solar inverter be used in areas with high levels of lightning activity?
Yes, a solar inverter can be used in areas with high levels of lightning activity. However, it is important to ensure that the inverter is designed to withstand lightning strikes and has appropriate surge protection measures in place to prevent damage. Additionally, proper grounding and installation by a qualified professional are crucial to mitigate any potential risks associated with lightning strikes.
Q: What is the role of a power monitoring feature in a solar inverter?
The role of a power monitoring feature in a solar inverter is to track and measure the amount of power generated by the solar panels. It provides real-time data on the energy production, allowing users to monitor the system's performance, identify any issues or inefficiencies, and optimize the overall energy output. This feature is crucial for ensuring the effective and efficient operation of a solar power system.
Q: Can a solar inverter be used with a time-of-use electricity tariff?
Yes, a solar inverter can be used with a time-of-use electricity tariff. Time-of-use electricity tariffs typically involve different rates for electricity consumption based on the time of day. A solar inverter can be programmed to produce and export excess solar energy during peak times when electricity rates are higher, and import energy from the grid during off-peak times when rates are lower. This allows users to optimize their energy consumption and potentially save on electricity costs.
Q: Can a solar inverter be used in commercial applications?
Yes, a solar inverter can be used in commercial applications. Commercial buildings can install solar panels and connect them to a solar inverter, which converts the DC power generated by the panels into usable AC power for the building's electrical system. This allows commercial establishments to harness solar energy and reduce their reliance on traditional grid power sources, resulting in cost savings and environmental benefits.
Q: Can a solar inverter be installed indoors?
Yes, a solar inverter can be installed indoors.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords