• AISI 1045 C45 (EN8) Steel Plate With Black/Turned/Grinded System 1
  • AISI 1045 C45 (EN8) Steel Plate With Black/Turned/Grinded System 2
  • AISI 1045 C45 (EN8) Steel Plate With Black/Turned/Grinded System 3
  • AISI 1045 C45 (EN8) Steel Plate With Black/Turned/Grinded System 4
  • AISI 1045 C45 (EN8) Steel Plate With Black/Turned/Grinded System 5
AISI 1045 C45 (EN8) Steel Plate With Black/Turned/Grinded

AISI 1045 C45 (EN8) Steel Plate With Black/Turned/Grinded

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Sheet
Standard:
AISI,ASTM,JIS,GB,BS,DIN,API,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Thickness:
as required
Steel Grade:
Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B),Q195
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Length:
as required
Net Weight:
as required

Chemical composition ( %)

CSiMnSiCr + Ni + Mo
0,45-0,50≤ 0,400,50-0,800,015-0,035≤ 0,63


Steel properties:

Medium carbon steel to be used either as-treated (quenched and tempered) or as-annealed (normalised), depending on the level of mechanical characteristics to be reached. Suitable for surface hardening.

Applications:

Quality parts for general mechanics: hydraulic jacks, pistons, axles, pinions for gears, bearings, etc.


The details of our Steel

1. Produce Standard: as the GB, AISI, ASTM, SAE, EN, BS, DIN, JIS Industry Standard

 

2. Produce processes: Smelt Iron -EAF smelt Billet  - ESR smelt Billet -Hot rolled or forged get the  steel round bar and  plate

 

3. Heat treatment:

Normalized / Annealed / Quenched+Tempered

 

4. Quality assurance:

All order we can received  Third party inspection, You can let SGS, BV,.. and others test company test and inspect our products before Goods shipping.


Product show

AISI 1045 C45 (EN8) Steel Plate With Black/Turned/Grinded

AISI 1045 C45 (EN8) Steel Plate With Black/Turned/Grinded

AISI 1045 C45 (EN8) Steel Plate With Black/Turned/Grinded

AISI 1045 C45 (EN8) Steel Plate With Black/Turned/Grinded



Q:What are the limitations of using special steel in marine environments?
Special steel, while highly durable and resistant to corrosion, does have its limitations when used in marine environments. One of the main limitations is its susceptibility to pitting corrosion. Due to the presence of chloride ions in seawater, special steel can develop localized corrosion known as pitting, which can weaken the material and compromise its structural integrity. Furthermore, special steel may also be prone to stress corrosion cracking in marine environments. When exposed to tensile stress and corrosive agents, such as saltwater, the material can develop small cracks that propagate over time, leading to catastrophic failures. This makes it crucial to carefully monitor and manage the stress levels to prevent such occurrences. Additionally, special steel can be affected by galvanic corrosion when in contact with different metals or alloys in a marine environment. This occurs due to the electrochemical potential difference between the metals, resulting in accelerated corrosion of the less noble material. This requires careful consideration when selecting other materials for use in conjunction with special steel to avoid galvanic corrosion. Moreover, the cost of special steel can be significantly higher compared to other materials used in marine environments. This can pose a limitation, especially for projects with budget constraints. The higher costs of special steel may make it less financially viable for certain applications, leading to the exploration of alternative materials for marine applications. Lastly, the weight of special steel can also pose limitations in marine environments. Its density can contribute to increased weight, which affects the buoyancy and overall stability of marine vessels. This can impact the performance and maneuverability of ships and offshore structures, necessitating careful engineering and design considerations. In conclusion, while special steel offers excellent durability and corrosion resistance, it does have limitations when used in marine environments. Pitting corrosion, stress corrosion cracking, galvanic corrosion, higher costs, and weight considerations are some of the factors that need to be carefully managed and accounted for when utilizing special steel in marine applications.
Q:How does special steel perform in terms of chemical resistance?
Special steel has excellent chemical resistance properties, making it highly resistant to corrosion and oxidation. It is capable of withstanding exposure to various chemicals, acids, and corrosive environments without undergoing significant degradation. This makes special steel a reliable choice for applications that require strong resistance against chemical attack.
Q:How does special steel contribute to reducing product downtime?
Special steel contributes to reducing product downtime by offering enhanced mechanical properties such as increased strength, hardness, and wear resistance. This allows components made from special steel to withstand harsh operating conditions, reducing the likelihood of breakdowns or failures. Additionally, special steel can be tailored to specific applications, ensuring optimal performance and longevity. By using special steel in the manufacturing process, products are more reliable, have longer service lives, and require less frequent maintenance, leading to reduced downtime and improved productivity.
Q:How does special steel contribute to reducing product weight?
Special steel contributes to reducing product weight through its unique properties. Special steel is known for its high strength-to-weight ratio, allowing manufacturers to use thinner and lighter steel components without compromising on strength and durability. This means that products made with special steel can be designed with reduced material thickness, resulting in overall weight reduction. Additionally, special steel's excellent corrosion resistance properties can eliminate the need for additional protective coatings, further reducing the product's weight.
Q:What are the different methods for controlling the grain size in special steel?
Special steel can be controlled for grain size using various methods. One method is heat treatment, where the steel is subjected to specific temperatures and cooling rates. By controlling the rate of nucleation and growth of new grains, the grain size can be refined. For example, slow cooling encourages the formation of larger grains, while rapid cooling results in smaller grain sizes. Alloying elements can also influence grain size. Elements like vanadium, niobium, and titanium can form carbides, acting as nucleation sites and leading to finer grain sizes. Conversely, elements like aluminum and silicon promote the formation of larger grains. Mechanical deformation, such as rolling or forging, can also affect grain size. These processes break up larger grains into smaller ones, thereby refining the grain size. Techniques like equal-channel angular pressing can even produce ultrafine grains in special steel. Certain elements, like boron and zirconium, can act as grain growth inhibitors during heat treatment. By controlling the concentration of these inhibitors, grain growth can be prevented, maintaining a desired grain size. Controlling the cooling rate during solidification and heat treatment is another method for controlling grain size. By carefully managing the cooling rate, a specific grain size or desired distribution of grain sizes can be achieved. It is important to consider the specific application and desired properties of the steel when choosing a method for controlling grain size. Different methods may be combined to achieve the desired grain size and optimize the performance of the steel for its intended use.
Q:What are the factors that affect the machinability of special steel?
The factors that affect the machinability of special steel include its chemical composition, microstructure, hardness, and the presence of impurities or additives. Additionally, the cutting conditions and tool materials used during machining operations also play a significant role in determining the machinability of special steel.
Q:How is special steel used in the power generation industry?
Special steel is used in the power generation industry for various applications such as turbine blades, generator rotors, and boiler components. These steels possess exceptional strength, corrosion resistance, and heat resistance properties, making them suitable for withstanding high temperatures and pressures in power plants. They help improve the efficiency and reliability of power generation equipment, ensuring safe and uninterrupted electricity production.
Q:What are the environmental benefits of using special steel?
Special steel, also known as alloy steel, offers several environmental benefits. Firstly, it has a longer lifespan compared to conventional steel, reducing the need for frequent replacements and minimizing the associated resource consumption and waste generation. Secondly, special steel is often manufactured using recycled materials, thereby reducing the demand for new raw materials and the energy required for extraction and processing. Additionally, its high strength and durability enable the production of lighter structures and components, leading to lower transportation and fuel consumption. Lastly, special steel can be recycled at the end of its life, further reducing waste and the environmental impact associated with its disposal.
Q:Can special steel be used in the semiconductor industry?
Yes, special steel can be used in the semiconductor industry. Special steel alloys such as stainless steel are often utilized for critical components and equipment in semiconductor manufacturing processes. These steel alloys exhibit high corrosion resistance, excellent mechanical properties, and can withstand the demanding conditions of the semiconductor industry, making them suitable for various applications.
Q:What are the main advantages of using special steel in the construction industry?
The main advantages of using special steel in the construction industry are its exceptional strength, durability, and versatility. Special steel has a high tensile strength, allowing for the construction of structures that can withstand heavy loads and extreme conditions. Its durability ensures a longer lifespan for buildings, reducing maintenance costs. Additionally, special steel can be manufactured in various forms and shapes, making it highly versatile and adaptable to different construction requirements.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords