• Sunny Boy 1000W Grid Connected Solar Inverter System 1
  • Sunny Boy 1000W Grid Connected Solar Inverter System 2
  • Sunny Boy 1000W Grid Connected Solar Inverter System 3
Sunny Boy 1000W Grid Connected Solar Inverter

Sunny Boy 1000W Grid Connected Solar Inverter

Ref Price:
get latest price
Loading Port:
Shenzhen
Payment Terms:
TT or LC
Min Order Qty:
1 unit pc
Supply Capability:
5000Units/per month pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Features of Grid Connected Solar Inverter 1000W

 

With a R&D team more than 100 engineers,40% of the staff, who has been deeply engaged in the photovoltaic industry for 10 years, CNBM takes the mission to increase the inverter availability and efficiency, putting continuous innovation to make CNBM inverter easier for installation and operation, and more cost-effective for solar plant construction. The full range of CNBM single phase inverters has received VDE, CE, G83/1, G59/2, ENEL2010, VDE4105, C10/C11, AS4777 etc.
Maximum efficiency of 97.8% and wide input voltage range, Internal DCswitch,MTL-String, Sound control,Bluetooth/RF technology /Wi-FiTransformerless,GT topology


Technical data of Grid Connected Solar Inverter 1000W

Model

CNBM-1000TL

CNBM-1500TL

Input data (DC)

 

 

Max. DC power

1300W

1800W

Max. DC voltage

450V

450V

Start voltage

90V

150V

PV voltage range

70V-450V

100V-450V

Max. input current

10A

10A

Number of MPP trackers /strings per MPP tracker

1/1

1/1

Output (AC)

 

Rated AC output power

1000W

1600W

Max. AC power

1100W

1650W

Max. output current

5.5A

8A

Power factor

1

1

THDI

<3%

<3%

AC connection

Single phase

Single phase

Efficiency

 

Max. efficiency

97%

97%

Euro weighted efficiency

96.50%

96.50%

MPPT efficiency

99.50%

99.50%

Protection devices

 

Output over voltage protection-varistor

yes

yes

Ground fault monitoring

yes

yes

Grid monitoring

yes

yes

General Data

 

Dimensions (W / H / D) in mm

360/329/132

360/329/132

Weight

11.5KG

11.5KG

Operating temperature range

–25°C ... +60°C

–25°C ... +60°C

Altitude

2000m(6560ft) without derating

Self-Consumption night

< 0.5 W

< 0.5 W

Topology

Transformerless

Cooling concept

Natural

Natural

Environmental Protection Rating

IP65

IP65

Features

 

DC connection

H4/MC4(opt)

H4/MC4(opt)

Display

LCD

LCD

Interfaces: RS485/RS232/Bluetooth / RF/Zigbee/Wifi

yes/yes/opt/opt/opt

Warranty: 5 years / 10 years

yes /opt

Certificates and approvals

CEVDE 0126-1-1DK5940G83/1-1G59/2RD1663EN50438

VDE-AR-N4105CEI-021IEC-62109ENEL-Guide

 

 

Figure 1 the application of Grid Connected Solar Inverter 1000W

 

 

Figure 2: Package of Grid Connected Solar Inverter 1000W

 

Q: How does a solar inverter impact the payback period of a solar system?
A solar inverter can have a significant impact on the payback period of a solar system. The efficiency and reliability of a solar inverter can affect the overall energy production and performance of the solar system. A high-quality inverter can optimize the conversion of solar energy into usable electricity, maximizing the system's output and reducing energy losses. This improved efficiency can shorten the payback period by increasing the amount of electricity generated and therefore the savings on utility bills. Additionally, a reliable inverter can minimize maintenance and replacement costs, further enhancing the financial returns of the solar investment.
Q: Photovoltaic grid-connected inverter without DC emc how will happen
When solar or other light illuminates the PN junction of the semiconductor, a voltage (called a photogenerated voltage) occurs on both sides of the PN junction. This phenomenon is the famous photovoltaic effect.
Q: What is the difference between a transformerless inverter and a transformer-based inverter?
A transformerless inverter and a transformer-based inverter differ primarily in their design and functionality. A transformerless inverter, as the name suggests, does not include a transformer in its circuitry. Instead, it uses advanced semiconductor components, such as insulated-gate bipolar transistors (IGBTs), to convert the direct current (DC) power from a source like solar panels into alternating current (AC) power for use in homes or businesses. The absence of a transformer allows for a more compact and lightweight design, making transformerless inverters ideal for space-constrained installations. However, due to the lack of galvanic isolation, transformerless inverters may have slightly less electrical safety compared to transformer-based inverters. On the other hand, a transformer-based inverter incorporates a transformer as an integral part of its circuitry. This transformer serves multiple purposes, including galvanic isolation, voltage step-up or step-down, and impedance matching. Galvanic isolation is particularly important as it provides a barrier between the input and output of the inverter, offering enhanced electrical safety and protection against electrical shocks. The presence of a transformer also helps to stabilize the output voltage, making transformer-based inverters more suitable for applications with sensitive electronics or where grid synchronization is critical. In summary, while transformerless inverters offer compactness and lightweight design, transformer-based inverters provide better electrical safety and stability. The choice between the two depends on the specific application requirements, space availability, and the level of electrical safety desired.
Q: How do you calculate the power output of a solar inverter?
The power output of a solar inverter can be calculated by multiplying the DC voltage input from the solar panels by the DC current output. This will give you the DC power output. To calculate the AC power output, you need to consider the efficiency of the inverter. Multiply the DC power output by the inverter efficiency to determine the AC power output.
Q: Are there any fire safety concerns associated with solar inverters?
Yes, there are some fire safety concerns associated with solar inverters. While solar inverters themselves are not typically a fire hazard, there are a few potential risks to consider. Firstly, improper installation of the solar inverter can lead to electrical issues that may cause a fire. It is important to hire a qualified and certified professional to install the inverter, ensuring that all electrical connections are secure and up to code. Secondly, if the solar inverter is located in an area that is prone to high temperatures or excessive heat, there is a risk of overheating. Inverters generate heat as they convert the direct current (DC) from solar panels into alternating current (AC) for use in homes or businesses. If the inverter is not properly ventilated or if it is exposed to extreme heat, it can overheat and potentially start a fire. Additionally, if there is a fault in the inverter or if it is damaged, it can increase the risk of fire. Regular maintenance and inspection of the solar inverter can help identify any potential issues and ensure its safe operation. To mitigate these fire safety concerns, it is crucial to follow proper installation guidelines, regularly inspect and maintain the inverter, and ensure it is located in a well-ventilated area away from excessive heat sources. It is also advisable to have a fire extinguisher nearby and to have a fire safety plan in place in case of emergencies.
Q: What is the warranty period for a solar inverter?
The warranty period for a solar inverter can vary depending on the brand and model. However, it is common for solar inverters to come with a warranty period of 5 to 10 years.
Q: Can a solar inverter be used with solar-powered remote sensing systems?
Yes, a solar inverter can be used with solar-powered remote sensing systems. A solar inverter is responsible for converting the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power various devices and systems. In the case of solar-powered remote sensing systems, the solar inverter would be an essential component in converting the DC power from the solar panels into the required AC power to operate the remote sensing equipment.
Q: Can a solar inverter be used with different AC voltages?
No, a solar inverter cannot be used with different AC voltages. It is designed to convert the DC power generated by solar panels into a specific AC voltage that is compatible with the electrical grid. Using it with a different AC voltage could lead to inefficient operation or even damage the inverter.
Q: PV grid-connected inverter and independent inverter in the control of what is the difference
The independent inverter in the output voltage phase amplitude of the frequency control is initially set good. Independent inverter, you should refer to off-grid inverter, do not need to consider the grid situation.
Q: Can a solar inverter be used with electric vehicles?
Yes, a solar inverter can be used with electric vehicles. Solar inverters are used to convert the DC (direct current) electricity generated from solar panels into AC (alternating current) electricity which can be used to power various devices, including electric vehicles. This allows for the charging of electric vehicles with clean and renewable solar energy.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords