• Solar Inverter 10kva KD-WV230 Interver, 260W, High Efficiency & Best Cost-Effectiveness System 1
  • Solar Inverter 10kva KD-WV230 Interver, 260W, High Efficiency & Best Cost-Effectiveness System 2
Solar Inverter 10kva KD-WV230 Interver, 260W, High Efficiency & Best Cost-Effectiveness

Solar Inverter 10kva KD-WV230 Interver, 260W, High Efficiency & Best Cost-Effectiveness

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1000 pc
Supply Capability:
100000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure

DC input voltage range22-50VDC

AC output voltage range80-160VAC/180-260VAC

AC output power 260W

AC frequency range50Hz/60Hz

G.W.1.1kg

Size250mm*200mm*60mm

KD-WV230 Series Using IP67 waterproof streamline design, Can effectively prevent rainwater on the surface erosion, Built-in high-performance Maximum Power Point Tracking(MPPT)Function,Better able to track changes in the solar luminosity and control different output power, Effectively capture and collect sunlight. AC electric power transmission using the reverse transmission technology, Is one of our patented technology, The inverter output power can provide load priority use, Extra electricity to the grid, Efficient use of the inverter to the power emitted, Electricity transmission rate of up to 99%.

micro inverter

Features

KD-WV230 Interver,260W,High Efficiency & Best Cost-Effectiveness

Pure Sine Wave Output;

High performance Maximum Power Point Tracking(MPPT);

Power Automatically Locked(APL);

Reverse power transmission;

High-Frequency High Conversion Rate;

Anti-Islanding Protect;

Input /output is fully isolated to protect the electrical safety;

Multiple parallel stacking;

The Leading Patent Technology;

IP67 WaterProof;

Flexible Installation;

Simplify maintenance (user serviceable)

High Efficiency & Best Cost-Effectiveness

 

Images

 

 micro inverter

 

 

Specification

Input Data

KD-WV230-120VAC/230VAC

  Recommended input power

200-300Watt

  Recommend the use of PV modules

300W/Vmp>34V/Voc<50V

  Maximum input DC voltage

50V

  Peak power tracking voltage

25-40V

  Operating Voltage Range

17-50V

  Min / Max start voltage

22-50V

  Maximum DC short current

15A

  Maximum Input Current

9.8A

  Output Data

@120VAC

@230VAC

  Peak power output

260Watt

260Watt

  Rated output power

250Watt

250Watt

  Rated output current

2.08A

0.92A

  Rated voltage range

80-160VAC

180-260VAC

  Rated frequency range

57-62.5Hz

47-52.5Hz

  Power factor

>96%

>96%

  Maximum units per branch circuit

15PCS(Single-phase)

30PCS(Single-phase)

  Output Efficiency

@120VAC

@230VAC

  Static MPPT efficiency

99.5%

99.5%

  Maximum output efficiency

92.3%

94.6%

  The average efficiency

91.2%

93.1%

  Night time power consumption

<50mW Max

<70mW Max

  THDI

<5%

<5%

  Exterior

  Ambient temperature

-40°C to +60°C

  Operating temperature range (inverter inside)

-40°C to +82°C

  Dimensions (WxHxD)

195mm*130mm*32mm

  Weight

0.65kg

  Waterproof Rating

IP67

  Cooling

Self-cooling

  Feature

  Power transmission mode

Reverse transfer, load priority

  Electromagnetic compatibility

EN50081.part1EN50082.part1

  Grid disturbance

EN61000-3-2 Safety EN62109

  Grid detection

DIN VDE 1026 UL1741

  Certificate

CEC,CE National patent technology

micro inverter

 micro inverter

FAQ

Can we visit your factory?

Surely, I will arrange the trip basing on your business schedule.

Can you do OEM for us?

Yes, we can.

How do you pack your products?

We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

Can you help us install the module if we cooperate with you?

We haven’t entered into installation sector, but we have the plan in near future.

 

Q: Can a solar inverter be connected to the grid?
Yes, a solar inverter can be connected to the grid. In fact, connecting a solar inverter to the grid is a common practice in solar energy systems. The inverter is responsible for converting the direct current (DC) produced by the solar panels into alternating current (AC) that can be used by homes or businesses or fed back into the electrical grid. This allows solar energy systems to generate electricity for consumption while also contributing excess power to the grid.
Q: How does the input frequency range affect the performance of a solar inverter?
The input frequency range directly affects the performance of a solar inverter. The inverter is designed to convert the variable direct current (DC) generated by the solar panels into stable alternating current (AC) that can be used by household appliances or fed into the grid. If the input frequency deviates from the specified range, it can lead to inefficient or unstable operation of the inverter. A wider input frequency range allows the inverter to handle fluctuations in the solar power generation, ensuring optimal performance and compatibility with different grid conditions.
Q: Can a solar inverter be used with solar-powered air conditioning systems?
Yes, a solar inverter can be used with solar-powered air conditioning systems. The solar inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power various electrical appliances, including air conditioning units. By connecting the solar inverter to the solar panels and the air conditioning system, the generated solar energy can be efficiently utilized to power the AC system.
Q: What is the role of a data logger in a solar inverter?
A data logger in a solar inverter is responsible for monitoring and recording important data related to the performance of the solar power system. It captures and stores information such as solar energy production, voltage levels, current flow, temperature, and other relevant metrics. This data is crucial for analyzing the efficiency and overall functioning of the solar inverter, as well as for identifying any potential issues or areas for improvement. Additionally, the data logger enables users to track the energy output and consumption, helping them make informed decisions about energy usage and potentially optimize their solar power system.
Q: Can a solar inverter be used in a building-integrated photovoltaic system?
Yes, a solar inverter can be used in a building-integrated photovoltaic (BIPV) system. The solar inverter is an essential component in a BIPV system as it converts the direct current (DC) generated by the photovoltaic panels into alternating current (AC) that can be used to power the building's electrical loads or fed back into the grid.
Q: What happens to excess solar energy generated by the inverter?
Excess solar energy generated by the inverter can be either stored in batteries for later use or fed back into the electrical grid, depending on the setup of the solar power system.
Q: Can a solar inverter be used in regions with extreme weather conditions?
Yes, a solar inverter can be used in regions with extreme weather conditions. However, it is important to choose an inverter that is designed and rated for the specific weather conditions of that region. For example, there are solar inverters available that are built to withstand high temperatures, extreme cold, humidity, and even harsh weather events such as hurricanes. It is crucial to consider the environmental factors and select an inverter that is suitable for the specific climate conditions to ensure optimal performance and longevity.
Q: What is the maximum input voltage for a solar inverter?
The maximum input voltage for a solar inverter typically depends on the specific model and manufacturer. However, in general, solar inverters are designed to handle input voltages ranging from around 250 to 600 volts.
Q: Can a solar inverter be used in a stand-alone solar system?
Yes, a solar inverter can be used in a stand-alone solar system. In fact, it is an essential component as it converts the direct current (DC) generated by the solar panels into usable alternating current (AC) for powering appliances and electronics. This allows the stand-alone solar system to meet the energy needs of off-grid locations or areas with limited access to the main power grid.
Q: Can a solar inverter be used with a solar-powered electric vehicle charging station?
Yes, a solar inverter can be used with a solar-powered electric vehicle charging station. The solar inverter helps convert the direct current (DC) power produced by the solar panels into alternating current (AC) power that can be used to charge electric vehicles. This allows for efficient and sustainable charging of electric vehicles using solar energy.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords