• Solar Inverter Set SHI 1000W High-Frequency Pure Sine Wave Inverter DC 24V to AC 220V/230V, SHI1000-22 System 1
  • Solar Inverter Set SHI 1000W High-Frequency Pure Sine Wave Inverter DC 24V to AC 220V/230V, SHI1000-22 System 2
  • Solar Inverter Set SHI 1000W High-Frequency Pure Sine Wave Inverter DC 24V to AC 220V/230V, SHI1000-22 System 3
  • Solar Inverter Set SHI 1000W High-Frequency Pure Sine Wave Inverter DC 24V to AC 220V/230V, SHI1000-22 System 4
Solar Inverter Set SHI 1000W High-Frequency Pure Sine Wave Inverter DC 24V to AC 220V/230V, SHI1000-22

Solar Inverter Set SHI 1000W High-Frequency Pure Sine Wave Inverter DC 24V to AC 220V/230V, SHI1000-22

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description

SHI series is a pure sine wave inverter which can convert 12/24/48Vdc to 220/230Vac 50/60Hz based on full digital and intelligent design. It features high reliability, high efficiency, concise outline, small volume, easy installation and operation. The inverter can be applied in many fields, such as household appliances, electric tools and industrial devices etc, especially for solar photovoltaic power system.


Features:

·Wide DC input voltage range
·The output voltage and frequency can be switched
·Low output harmonic distortion(THD≤3%)
·LED indicators for input voltage range, load power range, normal output & failure state
·Optional energy saving mode
·Wide working temperature range (industrial level)

·Continuous operation at full power


Protections:

·Output short circuit protection
·Overload protection

·Input low voltage protection
·Input over voltage protection
·Overheating protection

·Inverter abnormal protection





Specification:

 

Types

SHI1000-22

SHI1000-42

Nominal Battery  Voltage

24V

48V

Input Voltage  Range

21.6~32Vdc

43.2~64Vdc

No Load Current

≤0.45A

≤0.35A

Output Wave

Pure Sine Wave

Output Voltage

220Vac±3% / 230Vac±10%

Continuous Power

1000W

Power 10 sec

1500W

Power 1.5 sec

2000W

Surge Power

2250W

Frequency

50/60Hz±0.2%

Distortion THD

≤ 3% (resistive load)

Efficiency at Rated Power

≥93%

≥93.5%

Max. Efficiency

≥94%

≥94%

Terminal

25mm2

Dimensions

295×208×98mm

Installation

150×200mm

Hole Size

Φ6mm

Net Weight

3.3kg

Working  Temperature

-20℃~ +50℃

Storage  Temperature

-35℃~ +70℃

Humidity  

< 95% (N.C.)

Altitude

< 5000m(Derating to operate according to IEC62040 at a height exceeding 1000m)

Insulation  Resistance

  Between DC input terminals and metal case: ≥550MΩ;

  Between AC output terminals and metal case: ≥550MΩ.

Dielectric  Strength

  Between DC input terminals and metal case: Test voltage AC1500V, 1  minute

Between AC output terminals and metal case: Test voltage  AC1500V, 1 minute

FAQ

 

Q1:Can we visit your factory?

A1:Sure,welcome at any time,seeing is believing.

 

Q2:Which payment terms can you accept?

A2:T/T,L/C,Moneygram,Paypal are available for us.

 

Q: What is the importance of surge protection in a solar inverter?
Surge protection is of utmost importance in a solar inverter due to several reasons. Firstly, solar inverters are responsible for converting the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices. During this conversion process, there is a potential for power surges or voltage spikes to occur. These surges can damage the sensitive electronic components within the inverter, leading to malfunctions or complete failure. Secondly, solar inverters are often connected to the electrical grid, allowing excess electricity generated by the solar panels to be fed back into the grid. However, the grid can be prone to power fluctuations and surges caused by lightning strikes, utility switching, or other external factors. Without adequate surge protection, these power surges can travel back through the grid and damage the solar inverter. Furthermore, surge protection is essential in safeguarding the entire solar power system. In addition to the solar inverter, there are other components such as charge controllers, battery systems, and monitoring equipment that are interconnected. A surge in any part of the system can potentially damage or disrupt the entire system's operation. By installing surge protection devices, such as surge suppressors or surge arresters, in the solar inverter, the excess energy from power surges is diverted away from the sensitive electronic components. These devices are designed to absorb or redirect the surge, protecting the inverter and other connected equipment. In conclusion, surge protection is crucial in a solar inverter to prevent damage from power surges during the conversion process, protect against external power fluctuations from the grid, and safeguard the entire solar power system. Investing in proper surge protection ensures the longevity and reliable operation of the solar inverter, minimizing the risk of costly repairs or replacements.
Q: How does a solar inverter handle voltage fluctuations from the battery bank?
A solar inverter handles voltage fluctuations from the battery bank by regulating and stabilizing the incoming DC voltage from the batteries. It converts the fluctuating DC voltage into a stable AC voltage, ensuring a consistent power supply to the connected devices or grid.
Q: Can a solar inverter be used with different types of solar tracking systems?
Yes, a solar inverter can be used with different types of solar tracking systems. Solar inverters are designed to convert the direct current (DC) output from solar panels into alternating current (AC) electricity for use in homes or businesses. The type of solar tracking system used, such as single-axis or dual-axis tracking, does not affect the compatibility of the inverter. As long as the solar panels are generating DC electricity, the inverter can be used regardless of the tracking system in place.
Q: How does a solar inverter synchronize with the grid?
A solar inverter synchronizes with the grid by continuously monitoring the grid's voltage and frequency. It adjusts its own voltage and frequency accordingly to match the grid, allowing the solar power to flow seamlessly into the grid. This synchronization is important to ensure the safe and efficient operation of the solar power system, as well as to prevent any disturbances or damage to the grid.
Q: How do you calculate the power loss in a solar inverter?
To calculate the power loss in a solar inverter, you need to determine the difference between the input power and the output power. Subtracting the output power from the input power will give you the power loss.
Q: Can a solar inverter be connected to a home automation system?
Yes, a solar inverter can be connected to a home automation system. By integrating the solar inverter with the home automation system, homeowners can monitor and control their solar power production, track energy usage, and automate various energy-saving functions such as adjusting thermostat settings, turning off appliances, or scheduling energy-intensive tasks during peak solar production hours. This integration enhances the overall efficiency and convenience of managing solar energy within a smart home environment.
Q: Can a solar inverter work in low light conditions?
Yes, a solar inverter can work in low light conditions. While the output power of a solar inverter may decrease in low light conditions, it is still capable of converting the available sunlight into usable electricity. The performance may vary depending on the specific model and technology used, but modern solar inverters are designed to work efficiently even in low light situations.
Q: How does a solar inverter handle electromagnetic interference (EMI)?
A solar inverter typically handles electromagnetic interference (EMI) by incorporating various measures and technologies to minimize its impact. This includes using shielding materials and techniques to prevent EMI from affecting the internal electronics of the inverter. Additionally, filters and surge suppressors are employed to reduce EMI generated by the inverter from interfering with other electronic devices. Overall, the solar inverter aims to mitigate EMI issues to ensure optimal performance and minimize disruptions.
Q: Can a solar inverter be used with electric vehicles?
Yes, a solar inverter can be used with electric vehicles. It allows for the conversion of DC power generated by solar panels into AC power that can be used to charge the electric vehicle's battery. This helps to make the charging process more efficient and environmentally friendly by utilizing renewable energy sources.
Q: Can a solar inverter be used with a wind turbine?
Certainly! It is indeed possible to utilize a solar inverter alongside a wind turbine. Both wind turbines and solar panels generate direct current (DC) electricity, which necessitates conversion to alternating current (AC) in order to power the majority of household appliances and connect to the electrical grid. The primary function of a solar inverter is to convert DC electricity produced by solar panels into AC electricity. Interestingly, it can also perform the task of converting DC electricity generated by a wind turbine into AC electricity. However, it is worth mentioning that wind turbines typically produce higher voltage and fluctuating currents in comparison to solar panels. As a result, the inverter employed with a wind turbine may require specific design considerations to effectively manage these variations. Additionally, it is common for wind turbines to possess their own specialized inverters that are meticulously optimized to suit their unique electrical characteristics.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords