• 500 Kw Solar Inverter - High Efficiency Off-Grid Pure Sine Wave Power Inverter 600W, 24V-220V/230V, SHI600-22 System 1
  • 500 Kw Solar Inverter - High Efficiency Off-Grid Pure Sine Wave Power Inverter 600W, 24V-220V/230V, SHI600-22 System 2
  • 500 Kw Solar Inverter - High Efficiency Off-Grid Pure Sine Wave Power Inverter 600W, 24V-220V/230V, SHI600-22 System 3
  • 500 Kw Solar Inverter - High Efficiency Off-Grid Pure Sine Wave Power Inverter 600W, 24V-220V/230V, SHI600-22 System 4
500 Kw Solar Inverter - High Efficiency Off-Grid Pure Sine Wave Power Inverter 600W, 24V-220V/230V, SHI600-22

500 Kw Solar Inverter - High Efficiency Off-Grid Pure Sine Wave Power Inverter 600W, 24V-220V/230V, SHI600-22

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Description

SHI series is a pure sine wave inverter which can convert 12/24/48Vdc to 220/230Vac 50/60Hz based on full digital and intelligent design. It features high reliability, high efficiency, concise outline, small volume, easy installation and operation. The inverter can be applied in many fields, such as household appliances, electric tools and industrial devices etc, especially for solar photovoltaic power system.

 


Features:

·Adoption of advanced SPWM technology, pure sine wave output
·Dynamic current loop control technology to ensure inverter reliable operation

·Wide DC input voltage range
·The output voltage and frequency can be switched
·Low output harmonic distortion(THD≤3%)
·LED indicators for input voltage range, load power range, normal output & failure state
·Optional energy saving mode
·Wide working temperature range (industrial level)


Protections:

·Output short circuit protection
·Overload protection

·Input low voltage protection
·Input over voltage protection
·Overheating protection

·Inverter abnormal protection




Specification:

 

Types

SHI600-12

SHI600-22

Nominal Battery  Voltage

12V

24V

Input Voltage  Range

10.8~16Vdc

21.6~32Vdc

No Load Current

≤0.7A

≤0.45A

Output Wave

Pure Sine Wave

Output Voltage

220Vac±3% / 230Vac±10%

Continuous Power

600W

Power 10 sec

900W

Power 1.5 sec

1200W

Surge Power

1350W

Frequency

50/60Hz±0.2%

Distortion THD

≤ 3% (resistive load)

Efficiency at Rated Power

≥91%

≥92%

Max. Efficiency

≥93%

≥94%

Terminal

25mm2

Dimensions

295×186×82mm

Installation

150×178mm

Hole Size

Φ6mm

Net Weight

2.3kg

Working  Temperature

-20℃~ +50℃

Storage  Temperature

-35℃~ +70℃

Humidity  

< 95% (N.C.)

Altitude

< 5000m(Derating to operate according to IEC62040 at a height exceeding 1000m)

Insulation  Resistance

  Between DC input terminals and metal case: ≥550MΩ;

  Between AC output terminals and metal case: ≥550MΩ.

Dielectric  Strength

  Between DC input terminals and metal case: Test voltage AC1500V, 1  minute

Between AC output terminals and metal case: Test voltage  AC1500V, 1 minute

 

 

FAQ

 

Q: Off Grid VS On Grid Panels, what's the difference?

The differences between both panels are related to the system where they are going to be installed. 

On-grid installations, as the name said, are thought to feed the produced energy into the grid and for that it is important to have the biggest voltage that it is allowed (1000VDC in Europe, 600 VDC in USA). For a defined power, more voltage means less current (P=V*I) and less losses.
 

In off-grid installations it is different because you must storage the energy into batteries. Batteries usually work at 12, 24 or 48 VDC and off-grid photovoltaic modules work at the maximum power point (mpp) near this voltage (see the datasheets). So the controller that charges the batteries works also near the batteries voltage.
 

Your limiting factor here is going to be this controller. You have to see what is the maximum voltage and the maximum current that it can work with, upstream (photovoltaic modules) and downstream (batteries and
inverter). Then you have to dimension your PV array (Voltage and Current).

 


Q: Can a solar inverter be used with bifacial solar panels?
Yes, a solar inverter can be used with bifacial solar panels. Bifacial solar panels have the ability to capture sunlight from both sides, making them more efficient. A solar inverter is responsible for converting the DC power generated by solar panels into usable AC power for homes or businesses. Therefore, it can easily be used with bifacial solar panels to ensure efficient power conversion and utilization.
Q: Can a solar inverter be used without solar panels?
No, a solar inverter cannot be used without solar panels. Solar inverters are designed to convert the direct current (DC) electricity generated by solar panels into usable alternating current (AC) electricity for use in homes or businesses. Without solar panels generating electricity, there is no input for the inverter to convert, rendering it useless.
Q: What is maximum power point tracking (MPPT) in a solar inverter?
Maximum power point tracking (MPPT) is a technique used in solar inverters to optimize the power output of a photovoltaic (PV) system. Solar panels generate electricity when exposed to sunlight, and their power output varies depending on factors such as temperature, shading, and the angle of incidence of sunlight. The maximum power point (MPP) is the point at which a solar panel generates the maximum amount of power for a given set of environmental conditions. However, since these conditions are constantly changing, it is essential to continuously track the MPP to ensure the highest possible power output from the solar panels. A solar inverter with MPPT functionality utilizes advanced algorithms and electronics to continuously monitor the voltage and current output of the solar panels. By dynamically adjusting the operating voltage and current to match the MPP, the MPPT inverter ensures that the solar panels operate at their highest efficiency, regardless of the changing environmental conditions. When the solar panels are operating at their MPP, the MPPT inverter extracts the maximum amount of power from the panels and converts it into usable AC power. This optimization leads to higher overall energy generation and maximizes the return on investment for solar power systems. In addition to improving efficiency, MPPT also offers other advantages. It can compensate for fluctuations in solar irradiation, temperature, or shading that may affect the power output of the panels. By continuously tracking the MPP, the MPPT inverter adjusts the operating parameters to mitigate the impact of these factors, ensuring a consistent and optimal power output. Overall, MPPT is a crucial feature in solar inverters as it maximizes the power output of a PV system by continuously tracking and adjusting the operating parameters to match the MPP. This technology enables solar power systems to operate at their highest efficiency, enhance energy generation, and maximize the benefits of utilizing renewable energy sources.
Q: How does a solar inverter handle islanding detection and prevention?
A solar inverter handles islanding detection and prevention by constantly monitoring the grid and its own power output. If it detects a loss of grid connectivity, it initiates a process called anti-islanding, where it stops supplying power to the grid to prevent the formation of an island. The inverter accomplishes this by monitoring the frequency and voltage levels of the grid, and if it detects a deviation beyond a certain threshold, it disconnects from the grid within a specific timeframe. This ensures that the inverter does not continue to supply power to an isolated grid, which could pose safety risks to utility workers and damage electrical equipment.
Q: Are solar inverters weather-resistant?
Yes, solar inverters are designed to be weather-resistant. They are typically built with durable materials and sealed enclosures to protect them from various weather conditions such as rain, snow, and extreme temperatures. However, it is always recommended to consult the manufacturer's specifications and guidelines to ensure proper installation and maintenance for optimal performance and longevity.
Q: What is the role of a solar inverter in a battery storage system?
The role of a solar inverter in a battery storage system is to convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power homes or businesses. It also manages the charging and discharging of the batteries, ensuring efficient storage of excess energy generated by the solar panels and providing a reliable power supply during periods of low solar generation or power outages.
Q: What are the common issues and troubleshooting steps for a solar inverter?
Some common issues with solar inverters include no power output, low power output, display or communication errors, and overheating. Troubleshooting steps for these issues may involve checking the input voltage and connections, inspecting the DC and AC cables for damage, resetting the inverter, updating firmware or software, ensuring proper ventilation and cooling, and contacting technical support if necessary.
Q: Can a solar inverter be used with different types of energy management systems?
Yes, a solar inverter can be used with different types of energy management systems. Solar inverters are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power various electrical devices. They are compatible with different energy management systems, including grid-tied systems, off-grid systems, and hybrid systems. The inverter's main function is to ensure the efficient and safe conversion of solar energy, regardless of the type of energy management system it is paired with.
Q: What is the difference between a string inverter and a microinverter?
A string inverter is a centralized device that converts the direct current (DC) generated by a solar panel array into alternating current (AC) for use in a building or grid. It is typically connected to a string of solar panels, where multiple panels are wired together in series. On the other hand, a microinverter is a small inverter that is attached to each individual solar panel, converting the DC power generated by each panel into AC power. The main difference between the two is their level of integration and connectivity. While a string inverter handles the conversion for multiple panels, a microinverter enables independent operation and optimization of each panel, resulting in increased energy harvest, system flexibility, and fault tolerance.
Q: Are there any government incentives available for solar inverters?
Yes, there are government incentives available for solar inverters in many countries. These incentives are aimed at promoting the adoption of renewable energy and reducing carbon emissions. One common incentive is the solar investment tax credit (ITC) in the United States, which allows homeowners and businesses to deduct a percentage of their solar installation costs from their federal taxes. In some countries, such as Germany, there are feed-in tariffs that require utility companies to pay a premium for the electricity generated by solar inverters. Additionally, some local governments offer grants or rebates for installing solar inverters or offer low-interest loans to finance the purchase and installation of the equipment. It is important to check with your local government or relevant authorities to understand the specific incentives available in your region.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords