• Paper Thin Polycrystalline Solar Cells A Grade-17.10 System 1
  • Paper Thin Polycrystalline Solar Cells A Grade-17.10 System 2
  • Paper Thin Polycrystalline Solar Cells A Grade-17.10 System 3
Paper Thin Polycrystalline Solar Cells A Grade-17.10

Paper Thin Polycrystalline Solar Cells A Grade-17.10

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
5000 pc
Supply Capability:
8000000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Polycrystalline Silicon Solar Cells:

Solar cells is made by solar wafer, it has three categories of solar cell right now, monocrystalline polycrystalline and thin film,These cells are entirely based around the concept of ap-n junction, which is the critical part of solar module, it is the part that can convert the light energy into electricity, the thickness is from 180um to 200um, with even busbars to conduct electricity, textured cell can decrease diffuse reflection; they are often electrically connected and encapsulated as a module. Photovoltaic modules often have a sheet of glass on the front (sun up) side, allowing light to pass while protecting  semiconductor wafers from abrasion and impact due to wind-driven debris, rain, hail, etc. Solar cells are also usually connected in series in modules, creating an additive voltage. Connecting cells in parallel will yield a higher current;With high quality and stable quality. Our Cells can greatly improve the performance of Solar Modules.

Advantage of Polycrystalline Solar Cells

1.Tire-1 Solar Cells’ Manufacturer Quality Guarantee. With a complete and sophisticated quality government system, our Quality Management have arrived world’s leading place. Customer can receive Tire-1 Cells Maker’s Quality Standard Products.

2.Trusted Warranty. We can supply trusted after-sales service to our customer. If our cells are found not in conformity to the specification of manufacturer, or should the inspected quantity found in shortage, or should the packing found damaged, the buyer has the right to claim to the seller. The claim, if any, should be presented to seller within 30 days after cargo's arrival date to the port, together with related inspection report and photos issued and provided by a reputable independent surveyor such as SGS.

3. World’s Leading Manufacturer Equipment. We imported the newest and leading production equipment from abroad. Advanced equipment can guarantee the stable quality of cells. Auto production line can also save labor cost which will further cut our production cost.

Bulk supply: With the production capacity of 500MW, we can produce large quantity every month. This can satisfy most customer requirement.

Specification:

Mechanical data and design

  Format          -       156 mm × 156 mm ± 0.5 mm  

Thickness-       -       200 μm ± 20 μm

Front (-)               1.4 mm bus bars (silver),blue anti-reflection coating (silicon nitride)

Back (+)           -     2 mm wide soldering pads (silver) back surface field (aluminium)

Temperature Coefficient of Cells

Voc. Temp .coef.%/K                 -0.364%/K   

Isc . Temp .coef.%/K                 +0.077%/K

Pm. Temp. coef.%/K                 -0.368%/K

 

Electrical Characteristic

Efficiency (%)           Pmpp (W)          Umpp (V)        Impp (A)           Voc (V)          Isc (A)      

  18.00%                    4.380                 0.538             8.141               0.634             8.740

  17.90%                    4.356                 0.538             8.097               0.634             8.725

   17.80%                    4.331                 0.537             8.065                0.633            8.710

   17.70%                    4.307                 0.536             8.035                0.632            8.695

   17.60%                    4.283                 0.535             8.006                0.631            8.680

   17.50%                    4.258                 0.534             7.974                0.630            8.665

  17.40%                    4.234                 0.533             7.944                0.629            8.650

  17.30%                    4.210                 0.532             7.914                0.628            8.635

   17.20%                    4.185                 0.531              7.88    --            0.627        -- 8.620

   17.10%                    4.161                 0.530              7.851                 0.626           8.605

   17.00%                    4.137                 0.529              7.820                0.625           8.590

 

Intensity Dependence

Intensity [W/m2]      Isc× [mA]          Voc× [mV]           Pmpp

1000                         1.00                    1.000                 1.00

900                           0.90                    1.000                 0.90

800                           0.80                    0.99                   0.80

500                           0.50                    0.96                   0.49

300                           0.30                    0.93                   0.29

200                           0.20                    0.92                   0.19

 

IV Curve

Polycrystalline Solar Cells A GRADE-17.10

 

Solar Panel Images:

Polycrystalline Solar Cells A GRADE-17.10

Polycrystalline Solar Cells A GRADE-17.10

Polycrystalline Solar Cells A GRADE-17.10

 

Polycrystalline Solar Cells A GRADE-17.10

 

 

Polycrystalline Solar Cells A GRADE-17.10

Polycrystalline Solar Cells A GRADE-17.10


 

 FAQ

We have organized several common questions for our clientsmay help you sincerely

What price for each watt?

It depends on the efficiency of the solar cell, quantity, delivery date and payment terms.

How long can we receive the product after purchase?

In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. The pecific time of receiving is related to the state and position of customers.Commonly 7 to 10 working days can be served.

Can you provide the peripheral products of the solar panels, such as the battery, controller, and inverter? If so, can you tell me how do they match each other?

Yes, we can, we have two companies for solar region, one is CNBM International, the other is CNBM engineering Co.

We can provide you not only the solar module but also the off grid solar system, we can also provide you service with on grid plant.

What is your warranty of solar cell?

 Our product can promise lower than 0.3% open box crack, we support claim after opening the box if it has crackm color difference or sth, the buyer should give pictures immediately, we can not accept the claim after the solar cell has assembled to solar panel.

• Timeliness of delivery

• How do you pack your products?

We have rich experience on how to pack the solar cell to make sure the safety on shipment, we could use wooden box or pallet as buyer's preference.

 Can you do OEM for us?

Yes, we can.

Solar cells, also called photovoltaic (PV) cells by scientists, It is an electrical device that converts the energy of light directly into electricity . PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches.

 Traditional solar cells are made from silicon, are usually flat-plate, and generally are the most efficient. Second-generation solar cells are called thin-film solar cells because they are made from amorphous silicon or nonsilicon materials such as cadmium telluride. Thin film solar cells use layers of semiconductor materials only a few micrometers thick. Because of their flexibility, thin film solar cells can double as rooftop shingles and tiles, building facades, or the glazing for skylights. Third-generation solar cells are being made from a variety of new materials besides silicon, including solar inks using conventional printing press technologies, solar dyes, and conductive plastics. Some new solar cells use plastic lenses or mirrors to concentrate sunlight onto a very small piece of high efficiency PV material. The PV material is more expensive, but because so little is needed, these systems are becoming cost effective for use by utilities and industry. However, because the lenses must be pointed at the sun, the use of concentrating collectors is limited to the sunniest parts of the country.

Today, thousands of people power their homes and businesses with individual solar PV systems. Utility companies are also using PV technology for large power stations. Solar panels used to power homes and businesses are typically made from solar cells combined into modules that hold about 40 cells. A typical home will use about 10 to 20 solar panels to power the home. The panels are mounted at a fixed angle facing south, or they can be mounted on a tracking device that follows the sun, allowing them to capture the most sunlight. Many solar panels combined together to create one system is called a solar array. For large electric utility or industrial applications, hundreds of solar arrays are interconnected to form a large utility-scale PV system.



Q: How do solar cells perform in regions with frequent thunderstorms?
Solar cells may not perform optimally in regions with frequent thunderstorms due to reduced sunlight exposure during cloudy or stormy weather. The presence of clouds and heavy rainfall can hinder the amount of sunlight reaching the solar panels, resulting in lower electricity generation. However, advancements in technology have allowed solar cells to still generate some power even under such conditions. It is important to note that the overall performance of solar cells in these regions will depend on factors like the intensity and duration of the thunderstorms, as well as the efficiency and quality of the solar panel system.
Q: What is the maximum efficiency achievable by a solar cell?
The maximum efficiency achievable by a solar cell is determined by the Shockley-Queisser limit, which states that the theoretical maximum efficiency is around 33.7%. However, in practice, most commercially available solar cells have efficiencies ranging between 15% to 22%.
Q: Doping and Diffusion Principle in Solar Cell Processing
In the solar silicon, the impurity atoms of the gas source close to the silicon, after heating, so that the gradual diffusion of impurities will slowly penetrate the silicon wafer, the concentration from the edge of the silicon to the inside is gradually reduced.
Q: Can solar cells be used to power electric vehicle charging stations?
Yes, solar cells can be used to power electric vehicle charging stations. Solar panels can generate electricity from sunlight, which can be stored in batteries or directly used to charge electric vehicles. This renewable energy source can reduce reliance on the grid and contribute to a more sustainable and environmentally-friendly charging infrastructure.
Q: Can solar cells be used for powering submarines?
Yes, solar cells can be used for powering submarines to some extent. However, due to limitations in surface area and the amount of sunlight that can penetrate the water, solar power alone is not sufficient to power submarines for long durations or at great depths. Submarines typically rely on a combination of diesel-electric engines and rechargeable batteries for propulsion and power generation.
Q: Can solar cells be used to power farms or agricultural operations?
Yes, solar cells can be used to power farms or agricultural operations. Solar panels can be installed on rooftops, fields, or other suitable areas to convert sunlight into electricity. This renewable energy source can provide a consistent and sustainable power supply for various farming activities, such as irrigation systems, machinery, and storage facilities. Additionally, solar power helps reduce reliance on fossil fuels, lowers operational costs, and contributes to a greener and more environmentally friendly agricultural sector.
Q: How do solar cells affect the value of a property?
Solar cells can significantly increase the value of a property. They not only provide a reliable and sustainable source of energy, but also reduce electricity bills, making the property more attractive to potential buyers. Additionally, solar panels are seen as a valuable asset that can generate income through net metering or feed-in tariffs, further increasing the property's value.
Q: Can the solar powered cells really work better than the normal cells?
Because of the different ways of generating the power, the solar powered cells definitely better than the normal cells in the modern world.
Q: Can solar cells be used in off-grid cabins or cottages?
Yes, solar cells can definitely be used in off-grid cabins or cottages. Solar panels can generate electricity by converting sunlight into usable energy, which can then be stored in batteries for later use. This makes them an excellent choice for powering remote locations like off-grid cabins or cottages where access to the electrical grid may be limited or non-existent.
Q: Can solar cells be used in concert venues?
Yes, solar cells can be used in concert venues. They can be installed on the rooftops, facades, or parking areas of concert venues to generate clean and renewable electricity. Solar energy can power various aspects of the venue, such as lighting, sound systems, and other electrical equipment, reducing the reliance on traditional energy sources and lowering carbon emissions. Additionally, solar panels can be integrated into portable structures to provide power for outdoor concerts and festivals.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords